DOI QR코드

DOI QR Code

Synthesis of Biosurfactant-Based Silver Nanoparticles with Purified Rhamnolipids Isolated from Pseudomonas aeruginosa BS-161R

  • Kumar, C. Ganesh (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Mamidyala, Suman Kumar (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Das, Biswanath (Organic Chemistry Division, Indian Institute of Chemical Technology) ;
  • Sridhar, B. (Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology) ;
  • Devi, G. Sarala (Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology) ;
  • Karuna, Mallampalli SriLakshmi (Lipid Science and Technology Division, Indian Institute of Chemical Technology)
  • 투고 : 2010.01.18
  • 심사 : 2010.04.29
  • 발행 : 2010.07.28

초록

The biological synthesis of nanoparticles has gained considerable attention in view of their excellent biocompatibility and low toxicity. We isolated and purified rhamnolipids from Pseudomonas aeruginosa strain BS-161R, and these purified rhamnolipids were used to synthesize silver nanoparticles. The purified rhamnolipids were further characterized and the structure was elucidated based on one- and two-dimensional $^1H$ and $^{13}C$ NMR, FT-IR, and HR-MS spectral data. Purified rhamnolipids in a pseudoternary system of n-heptane and water system along with n-butanol as a cosurfactant were added to the aqueous solutions of silver nitrate and sodium borohydride to form reverse micelles. When these micelles were mixed, they resulted in the rapid formation of silver nanoparticles. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The nanoparticles formed had a sharp adsorption peak at 410 nm, which is characteristic of surface plasmon resonance of the silver nanoparticles. The nanoparticles were monodispersed, with an average particle size of 15.1 nm (${\sigma}={\pm}5.82$ nm), and spherical in shape. The EDS analysis revealed the presence of elemental silver signal in the synthesized nanoparticles. The formed silver nanoparticles exhibited good antibiotic activity against both Grampositive and Gram-negative pathogens and Candida albicans, suggesting their broad-spectrum antimicrobial activity.

키워드

참고문헌

  1. Abalos, A., A. Pinazo, M. R. Infante, M. Casals, F. Garcia, and A. Manresa. 2001. Physicochemical and antimicrobial properties of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371. https://doi.org/10.1021/la0011735
  2. Alt, V., T. Bechert, P. Steinrücker, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, and R. Schnettler. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25: 4383-4391. https://doi.org/10.1016/j.biomaterials.2003.10.078
  3. Amsterdam, D. 1996. Susceptibility testing of antimicrobials in liquid media, pp. 52-111. In Loman, V. (ed.). Antibiotics in Laboratory Medicine, Fourth Edition. Williams and Wilkins, Baltimore, MD.
  4. Baker, R. A. and J. H. Tatum. 1998. Novel anthraquinones from stationary cultures of Fusarium oxysporum. J. Ferment. Bioeng. 85: 359-361. https://doi.org/10.1016/S0922-338X(98)80077-9
  5. Baker, C., A. Pradhan, L. Pakstis, J. D. Pochan, and S. I. Shah. 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5: 244-249. https://doi.org/10.1166/jnn.2005.034
  6. Bourrel, M. and R. S. Schechter. 1988. Microemulsions and Related Systems: Formulation, Solvency and Physical Properties. Marcel Dekker, New York.
  7. Brause, R., H. Moeltgen, and K. Kleinermanns. 2002. Characterization of laser ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STEM/SEM microscopy. Appl. Phys. B Lasers Optics 75: 711-716. https://doi.org/10.1007/s00340-002-1024-3
  8. Bushnell, L. D. and H. F. Hass. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41: 653-673.
  9. Chandrasekaran, E. V. and J. N. Bemiller. 1980. Constituent analyses of glycosamino-glycans, pp. 89-96. In R. L. Whistler (ed.). Methods in Carbohydrate Chemistry. Academic Press Inc., New York.
  10. Cho, K. H., J. E. Park, T. Osaka, and S. G. Park. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956-960. https://doi.org/10.1016/j.electacta.2005.04.071
  11. Cooper, D. G. and B. G. Goldenberg. 1987. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53: 224-229.
  12. Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
  13. Duran, N., P. D. Marcato, O. L. Alves, G. I. de Souza, and E. Esposito. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3: 8. https://doi.org/10.1186/1477-3155-3-8
  14. Falletta, E., M. Bonini, E. Fratini, A. Lo Nostro, G. Pesavento, A. Becheri, P. Lo Nostro, P. Canton, and P. Baglioni. 2008. Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics. J. Phys. Chem. C 112: 11758-11766. https://doi.org/10.1021/jp8035814
  15. Furno, F., K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, et al. 2004. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chemother. 54: 1019-1024. https://doi.org/10.1093/jac/dkh478
  16. Garti, N., A. Aserin, and M. Fanun. 2000. Non-ionic sucrose esters microemulsions for food applications. Part 1: Water solubilization. Colloids Surf. A 164: 27-38. https://doi.org/10.1016/S0927-7757(99)00389-1
  17. Hisatsuka, K., T. Nakahara, N. Sano, and K. Yamada. 1971. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35: 686-692. https://doi.org/10.1271/bbb1961.35.686
  18. Itoh, S., H. Honda, F. Tomita, and T. Suzuki. 1971. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of $C_{12},\:C_{13},\:and\:C_{14}$ fractions). J. Antibiot. 24: 855-859. https://doi.org/10.7164/antibiotics.24.855
  19. Jain, P. and T. Pradeep. 2005. Potential of silver nanoparticlecoated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90: 59-63. https://doi.org/10.1002/bit.20368
  20. Jain, D. K., H. Lee, and J. T. Trevors. 1992. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 10: 87-93. https://doi.org/10.1007/BF01583840
  21. Kerker, M. 1985. The optics of colloidal silver: Something old and something new. J. Colloid Interface Sci. 105: 297-314. https://doi.org/10.1016/0021-9797(85)90304-2
  22. Kim, S. and H. J. Kim. 2006. Anti-bacterial performance of colloidal silver treated laminate wood flooring. Int. Biodeterior. Biodegradation 57: 155-162. https://doi.org/10.1016/j.ibiod.2006.02.002
  23. Kim, K.-J., W. S. Sung, B. K. Suh, S.-K. Moon, J.-S. Choi, J. G. Kim, and D. G. Lee. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235-242. https://doi.org/10.1007/s10534-008-9159-2
  24. Krieg, N. R. and J. G. Holt. 1989. Gram-negative rods and cocci, pp. 140-219. In J. G. Holt (ed.). Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, MD.
  25. Kroger, N., R. Deutzmann, and M. Sumper. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442): 1129-1132. https://doi.org/10.1126/science.286.5442.1129
  26. Liao, H.-T. 2008. A new application of biosurfactant for the preparation of polycaprolactone/layered silicate nanocomposites. Polym. Eng. Sci. 48: 1524-1531. https://doi.org/10.1002/pen.21124
  27. Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, and C. M. Chen. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916-924. https://doi.org/10.1021/pr0504079
  28. Malik, A. S., M. J. Duncan, and P. G. Bruce. 2003. Mesostructured iron and manganese oxides. J. Mater. Chem. 13: 2123-2126. https://doi.org/10.1039/b303551d
  29. Maneerung, T., S. Tokura, and R. Rujiravanit. 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 72: 43-51. https://doi.org/10.1016/j.carbpol.2007.07.025
  30. Mata-Sandoval, J., J. Karns, and A. Torrents. 1999. Highperformance liquid chromatography method for the characterization of rhamnolipids mixture produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. 864: 211-220. https://doi.org/10.1016/S0021-9673(99)00979-6
  31. Matsunaga, T., T. Suzuki, M. Tanaka, and A. Arakaki. 2007. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 25: 182-188. https://doi.org/10.1016/j.tibtech.2007.02.002
  32. Medentsev, A. G. and V. K. Alimenko. 1998. Naphthoquinone metabolites of the fungi. Phytochemistry 47: 935-959.
  33. Mock, J. J., M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116: 6755-6759. https://doi.org/10.1063/1.1462610
  34. Mohanpuria, P., N. K. Rama, and S. K. Yadav. 2008. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 10: 507-517. https://doi.org/10.1007/s11051-007-9275-x
  35. Monteiro, S. A., G. L. Sassaki, L. M. de Souza, J. A. Meira, J. M. de Araujo, D. A. Mitchell, L. P. Ramos, and N. Krieger. 2007. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids 147: 1-13. https://doi.org/10.1016/j.chemphyslip.2007.02.001
  36. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  37. Nitschke, M., S. G. V. A. O. Costa, and J. Contiero. 2005. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 21: 1593-1600. https://doi.org/10.1021/bp050239p
  38. Panacek, A., L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, and R. Zboril. 2006. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110: 16248-16253. https://doi.org/10.1021/jp063826h
  39. Parra, J. L., J. Pastor, F. Comelles, M. A. Manresa, and M. P. Bosch. 1990. Studies of biosurfactants obtained from olive oil. Tenside Surf. Det. 27: 302-306.
  40. Qi, L., Y. Gao, and J. Ma. 1999. Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals. Colloids Surf. A 157: 285-294. https://doi.org/10.1016/S0927-7757(99)00053-9
  41. Rai, M., A. Yadav, and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  42. Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira. 2006. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618. https://doi.org/10.1093/jac/dkl024
  43. Rodriguez, C. and D. P. Acharya. 2003. Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems. J. Colloid Interface Sci. 262: 500-505. https://doi.org/10.1016/S0021-9797(03)00260-1
  44. Sastry, M., A. Ahmad, M. I. Khan, and R. Kumar. 2004. Microbial nanoparticle production, pp. 126-135. In C. M. Niemeyer and C. A. Mirkin (eds.). Nanobiotechnology. Wiley-VCH, Weinheim, Germany.
  45. Schrand, A. M., L. K. Braydich-Stolle, J. J. Schlager, L. Dai, and S. M. Hussain. 2008. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19: 235104. https://doi.org/10.1088/0957-4484/19/23/235104
  46. Sheppard, J. D. and C. N. Mulligan, 1987. The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl. Microbiol. Biotechnol. 27: 110-116.
  47. Siegmund, I. and F. Wagner. 1991. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265-268. https://doi.org/10.1007/BF02438660
  48. Silver, S. 2003. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27: 341-353. https://doi.org/10.1016/S0168-6445(03)00047-0
  49. Sleytr, U. B., C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer. 2007. S-Layers as a tool kit for nanobiotechnological applications. FEMS Microbiol. Lett. 267: 131-144. https://doi.org/10.1111/j.1574-6968.2006.00573.x
  50. Sosa, I. O., C. Noguez, and R. G. Barrera. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107: 6269-6275. https://doi.org/10.1021/jp0274076
  51. Syldatk, C., S. Lang, and F. Wagner. 1985. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on alkanes. Z. Naturforsch. 40c: 51-60.
  52. Syldatk, C., S. Lang, U. Matulovic, and F. Wagner. 1985. Production of four interfacial active rhamnolipids from nalkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z. Naturforsch. 40c: 61-67.
  53. Xie, Y., Y. Li, and R. Ye. 2005. Effect of alcohols on the phase behaviour of microemulsions formed by a biosurfactant - rhamnolipid. J. Dispersion Sci. Technol. 26: 455-461. https://doi.org/10.1081/DIS-200054576
  54. Yuan, Z.-Y., T.-Z. Ren, and B.-L. Su. 2004. Surfactant-mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials. Catal. Today 93-95: 743-750. https://doi.org/10.1016/j.cattod.2004.06.092

피인용 문헌

  1. Synthesis and characterization of gold glyconanoparticles functionalized with sugars of sweet sorghum syrup vol.27, pp.5, 2011, https://doi.org/10.1002/btpr.650
  2. Replacement of Hexachlorocyclohexane to Environmentally Friendly Biosurfactant as Precursor for the Production of Biosurfactant from Pseudomonas vol.21, pp.8, 2010, https://doi.org/10.4014/jmb.1012.12024
  3. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants fromPseudomonas aeruginosaBS-161R vol.28, pp.6, 2010, https://doi.org/10.1002/btpr.1634
  4. Silver glyconanoparticles functionalized with sugars of sweet sorghum syrup as an antimicrobial agent vol.47, pp.10, 2012, https://doi.org/10.1016/j.procbio.2012.05.023
  5. Biogenic synthesis, characterization, toxicity and photocatalysis of zinc sulfide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BS01 as capping and stabilizing agent vol.88, pp.6, 2010, https://doi.org/10.1002/jctb.3934
  6. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB vol.6, pp.3, 2013, https://doi.org/10.1007/s12161-012-9503-6
  7. Lipoprotein biosurfactant production from an extreme acidophile using fish oil and its immobilization in nanoporous activated carbon for the removal of Ca2+and Cr3+in aqueous sol vol.4, pp.64, 2010, https://doi.org/10.1039/c4ra03101f
  8. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles vol.15, pp.8, 2014, https://doi.org/10.3390/ijms150813720
  9. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation vol.35, pp.1, 2010, https://doi.org/10.3109/07388551.2013.819484
  10. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications vol.99, pp.11, 2010, https://doi.org/10.1007/s00253-015-6622-1
  11. Silver/chitosan-based Janus particles: Synthesis, characterization, and assessment of antimicrobial activity in vivo and vitro vol.78, pp.None, 2015, https://doi.org/10.1016/j.foodres.2015.08.035
  12. Biogenic Nanoparticles from Schwanniomyces occidentalis NCIM 3459: Mechanistic Aspects and Catalytic Applications vol.179, pp.4, 2010, https://doi.org/10.1007/s12010-016-2015-x
  13. Role of catalytic protein and stabilising agents in the transformation of Ag ions to nanoparticles by Pseudomonas aeruginosa vol.10, pp.5, 2016, https://doi.org/10.1049/iet-nbt.2015.0093
  14. Rhamnolipid Biosurfactants Produced by Pseudomonas Species vol.59, pp.None, 2016, https://doi.org/10.1590/1678-4324-2016160786
  15. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.00492
  16. Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties vol.7, pp.6, 2010, https://doi.org/10.3390/nano7060139
  17. Chitosan loaded with silver nanoparticles, CS‐AgNPs, using thymus syriacus, wild mint, and rosemary essential oil extracts as reducing and capping agents vol.30, pp.11, 2017, https://doi.org/10.1002/poc.3680
  18. Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery vol.8, pp.1, 2010, https://doi.org/10.1007/s13205-017-1022-0
  19. A review on biosynthesis of silver nanoparticles and their biocidal properties vol.16, pp.None, 2010, https://doi.org/10.1186/s12951-018-0334-5
  20. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials vol.12, pp.1, 2010, https://doi.org/10.1111/1751-7915.13320
  21. Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis - a comprehensive review vol.13, pp.3, 2010, https://doi.org/10.1049/iet-nbt.2018.5184
  22. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities vol.9, pp.None, 2010, https://doi.org/10.1186/s13568-019-0785-6
  23. Synthesis and characterization of silver nano particles using co-precipitation method vol.33, pp.p1, 2010, https://doi.org/10.1016/j.matpr.2020.06.029
  24. Potential Use of Microbial Surfactant in Microemulsion Drug Delivery System: A Systematic Review vol.14, pp.None, 2010, https://doi.org/10.2147/dddt.s232325
  25. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application vol.11, pp.4, 2010, https://doi.org/10.3390/jfb11040084
  26. Biosurfactants’ Potential Role in Combating COVID-19 and Similar Future Microbial Threats vol.11, pp.1, 2010, https://doi.org/10.3390/app11010334
  27. Sonoelectrochemical Synthesis of Antibacterial Active Silver Nanoparticles in Rhamnolipid Solution vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/7754523
  28. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.636588
  29. MHD and Stability for Convective Flow of Micropolar Nanofluid over a Moving and Vertical Permeable Plate vol.408, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/ddf.408.51
  30. Self-assembly, interfacial properties, interactions with macromolecules and molecular modelling and simulation of microbial bio-based amphiphiles (biosurfactants). A tutorial review vol.23, pp.11, 2010, https://doi.org/10.1039/d1gc00097g
  31. Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives vol.24, pp.None, 2010, https://doi.org/10.1016/j.eti.2021.102090