참고문헌
- Abalos, A., A. Pinazo, M. R. Infante, M. Casals, F. Garcia, and A. Manresa. 2001. Physicochemical and antimicrobial properties of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371. https://doi.org/10.1021/la0011735
- Alt, V., T. Bechert, P. Steinrücker, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, and R. Schnettler. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25: 4383-4391. https://doi.org/10.1016/j.biomaterials.2003.10.078
- Amsterdam, D. 1996. Susceptibility testing of antimicrobials in liquid media, pp. 52-111. In Loman, V. (ed.). Antibiotics in Laboratory Medicine, Fourth Edition. Williams and Wilkins, Baltimore, MD.
- Baker, R. A. and J. H. Tatum. 1998. Novel anthraquinones from stationary cultures of Fusarium oxysporum. J. Ferment. Bioeng. 85: 359-361. https://doi.org/10.1016/S0922-338X(98)80077-9
- Baker, C., A. Pradhan, L. Pakstis, J. D. Pochan, and S. I. Shah. 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5: 244-249. https://doi.org/10.1166/jnn.2005.034
- Bourrel, M. and R. S. Schechter. 1988. Microemulsions and Related Systems: Formulation, Solvency and Physical Properties. Marcel Dekker, New York.
- Brause, R., H. Moeltgen, and K. Kleinermanns. 2002. Characterization of laser ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STEM/SEM microscopy. Appl. Phys. B Lasers Optics 75: 711-716. https://doi.org/10.1007/s00340-002-1024-3
- Bushnell, L. D. and H. F. Hass. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41: 653-673.
- Chandrasekaran, E. V. and J. N. Bemiller. 1980. Constituent analyses of glycosamino-glycans, pp. 89-96. In R. L. Whistler (ed.). Methods in Carbohydrate Chemistry. Academic Press Inc., New York.
- Cho, K. H., J. E. Park, T. Osaka, and S. G. Park. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956-960. https://doi.org/10.1016/j.electacta.2005.04.071
- Cooper, D. G. and B. G. Goldenberg. 1987. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53: 224-229.
- Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
- Duran, N., P. D. Marcato, O. L. Alves, G. I. de Souza, and E. Esposito. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3: 8. https://doi.org/10.1186/1477-3155-3-8
- Falletta, E., M. Bonini, E. Fratini, A. Lo Nostro, G. Pesavento, A. Becheri, P. Lo Nostro, P. Canton, and P. Baglioni. 2008. Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics. J. Phys. Chem. C 112: 11758-11766. https://doi.org/10.1021/jp8035814
- Furno, F., K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, et al. 2004. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chemother. 54: 1019-1024. https://doi.org/10.1093/jac/dkh478
- Garti, N., A. Aserin, and M. Fanun. 2000. Non-ionic sucrose esters microemulsions for food applications. Part 1: Water solubilization. Colloids Surf. A 164: 27-38. https://doi.org/10.1016/S0927-7757(99)00389-1
- Hisatsuka, K., T. Nakahara, N. Sano, and K. Yamada. 1971. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35: 686-692. https://doi.org/10.1271/bbb1961.35.686
-
Itoh, S., H. Honda, F. Tomita, and T. Suzuki. 1971. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of
$C_{12},\:C_{13},\:and\:C_{14}$ fractions). J. Antibiot. 24: 855-859. https://doi.org/10.7164/antibiotics.24.855 - Jain, P. and T. Pradeep. 2005. Potential of silver nanoparticlecoated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90: 59-63. https://doi.org/10.1002/bit.20368
- Jain, D. K., H. Lee, and J. T. Trevors. 1992. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 10: 87-93. https://doi.org/10.1007/BF01583840
- Kerker, M. 1985. The optics of colloidal silver: Something old and something new. J. Colloid Interface Sci. 105: 297-314. https://doi.org/10.1016/0021-9797(85)90304-2
- Kim, S. and H. J. Kim. 2006. Anti-bacterial performance of colloidal silver treated laminate wood flooring. Int. Biodeterior. Biodegradation 57: 155-162. https://doi.org/10.1016/j.ibiod.2006.02.002
- Kim, K.-J., W. S. Sung, B. K. Suh, S.-K. Moon, J.-S. Choi, J. G. Kim, and D. G. Lee. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235-242. https://doi.org/10.1007/s10534-008-9159-2
- Krieg, N. R. and J. G. Holt. 1989. Gram-negative rods and cocci, pp. 140-219. In J. G. Holt (ed.). Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, MD.
- Kroger, N., R. Deutzmann, and M. Sumper. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442): 1129-1132. https://doi.org/10.1126/science.286.5442.1129
- Liao, H.-T. 2008. A new application of biosurfactant for the preparation of polycaprolactone/layered silicate nanocomposites. Polym. Eng. Sci. 48: 1524-1531. https://doi.org/10.1002/pen.21124
- Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, and C. M. Chen. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916-924. https://doi.org/10.1021/pr0504079
- Malik, A. S., M. J. Duncan, and P. G. Bruce. 2003. Mesostructured iron and manganese oxides. J. Mater. Chem. 13: 2123-2126. https://doi.org/10.1039/b303551d
- Maneerung, T., S. Tokura, and R. Rujiravanit. 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 72: 43-51. https://doi.org/10.1016/j.carbpol.2007.07.025
- Mata-Sandoval, J., J. Karns, and A. Torrents. 1999. Highperformance liquid chromatography method for the characterization of rhamnolipids mixture produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. 864: 211-220. https://doi.org/10.1016/S0021-9673(99)00979-6
- Matsunaga, T., T. Suzuki, M. Tanaka, and A. Arakaki. 2007. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 25: 182-188. https://doi.org/10.1016/j.tibtech.2007.02.002
- Medentsev, A. G. and V. K. Alimenko. 1998. Naphthoquinone metabolites of the fungi. Phytochemistry 47: 935-959.
- Mock, J. J., M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116: 6755-6759. https://doi.org/10.1063/1.1462610
- Mohanpuria, P., N. K. Rama, and S. K. Yadav. 2008. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 10: 507-517. https://doi.org/10.1007/s11051-007-9275-x
- Monteiro, S. A., G. L. Sassaki, L. M. de Souza, J. A. Meira, J. M. de Araujo, D. A. Mitchell, L. P. Ramos, and N. Krieger. 2007. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids 147: 1-13. https://doi.org/10.1016/j.chemphyslip.2007.02.001
- Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
- Nitschke, M., S. G. V. A. O. Costa, and J. Contiero. 2005. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 21: 1593-1600. https://doi.org/10.1021/bp050239p
- Panacek, A., L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, and R. Zboril. 2006. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110: 16248-16253. https://doi.org/10.1021/jp063826h
- Parra, J. L., J. Pastor, F. Comelles, M. A. Manresa, and M. P. Bosch. 1990. Studies of biosurfactants obtained from olive oil. Tenside Surf. Det. 27: 302-306.
- Qi, L., Y. Gao, and J. Ma. 1999. Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals. Colloids Surf. A 157: 285-294. https://doi.org/10.1016/S0927-7757(99)00053-9
- Rai, M., A. Yadav, and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
- Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira. 2006. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618. https://doi.org/10.1093/jac/dkl024
- Rodriguez, C. and D. P. Acharya. 2003. Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems. J. Colloid Interface Sci. 262: 500-505. https://doi.org/10.1016/S0021-9797(03)00260-1
- Sastry, M., A. Ahmad, M. I. Khan, and R. Kumar. 2004. Microbial nanoparticle production, pp. 126-135. In C. M. Niemeyer and C. A. Mirkin (eds.). Nanobiotechnology. Wiley-VCH, Weinheim, Germany.
- Schrand, A. M., L. K. Braydich-Stolle, J. J. Schlager, L. Dai, and S. M. Hussain. 2008. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19: 235104. https://doi.org/10.1088/0957-4484/19/23/235104
- Sheppard, J. D. and C. N. Mulligan, 1987. The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl. Microbiol. Biotechnol. 27: 110-116.
- Siegmund, I. and F. Wagner. 1991. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265-268. https://doi.org/10.1007/BF02438660
- Silver, S. 2003. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27: 341-353. https://doi.org/10.1016/S0168-6445(03)00047-0
- Sleytr, U. B., C. Huber, N. Ilk, D. Pum, B. Schuster, and E. M. Egelseer. 2007. S-Layers as a tool kit for nanobiotechnological applications. FEMS Microbiol. Lett. 267: 131-144. https://doi.org/10.1111/j.1574-6968.2006.00573.x
- Sosa, I. O., C. Noguez, and R. G. Barrera. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107: 6269-6275. https://doi.org/10.1021/jp0274076
- Syldatk, C., S. Lang, and F. Wagner. 1985. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on alkanes. Z. Naturforsch. 40c: 51-60.
- Syldatk, C., S. Lang, U. Matulovic, and F. Wagner. 1985. Production of four interfacial active rhamnolipids from nalkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z. Naturforsch. 40c: 61-67.
- Xie, Y., Y. Li, and R. Ye. 2005. Effect of alcohols on the phase behaviour of microemulsions formed by a biosurfactant - rhamnolipid. J. Dispersion Sci. Technol. 26: 455-461. https://doi.org/10.1081/DIS-200054576
- Yuan, Z.-Y., T.-Z. Ren, and B.-L. Su. 2004. Surfactant-mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials. Catal. Today 93-95: 743-750. https://doi.org/10.1016/j.cattod.2004.06.092
피인용 문헌
- Synthesis and characterization of gold glyconanoparticles functionalized with sugars of sweet sorghum syrup vol.27, pp.5, 2011, https://doi.org/10.1002/btpr.650
- Replacement of Hexachlorocyclohexane to Environmentally Friendly Biosurfactant as Precursor for the Production of Biosurfactant from Pseudomonas vol.21, pp.8, 2010, https://doi.org/10.4014/jmb.1012.12024
- Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants fromPseudomonas aeruginosaBS-161R vol.28, pp.6, 2010, https://doi.org/10.1002/btpr.1634
- Silver glyconanoparticles functionalized with sugars of sweet sorghum syrup as an antimicrobial agent vol.47, pp.10, 2012, https://doi.org/10.1016/j.procbio.2012.05.023
- Biogenic synthesis, characterization, toxicity and photocatalysis of zinc sulfide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BS01 as capping and stabilizing agent vol.88, pp.6, 2010, https://doi.org/10.1002/jctb.3934
- Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB vol.6, pp.3, 2013, https://doi.org/10.1007/s12161-012-9503-6
- Lipoprotein biosurfactant production from an extreme acidophile using fish oil and its immobilization in nanoporous activated carbon for the removal of Ca2+and Cr3+in aqueous sol vol.4, pp.64, 2010, https://doi.org/10.1039/c4ra03101f
- Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles vol.15, pp.8, 2014, https://doi.org/10.3390/ijms150813720
- Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation vol.35, pp.1, 2010, https://doi.org/10.3109/07388551.2013.819484
- Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications vol.99, pp.11, 2010, https://doi.org/10.1007/s00253-015-6622-1
- Silver/chitosan-based Janus particles: Synthesis, characterization, and assessment of antimicrobial activity in vivo and vitro vol.78, pp.None, 2015, https://doi.org/10.1016/j.foodres.2015.08.035
- Biogenic Nanoparticles from Schwanniomyces occidentalis NCIM 3459: Mechanistic Aspects and Catalytic Applications vol.179, pp.4, 2010, https://doi.org/10.1007/s12010-016-2015-x
- Role of catalytic protein and stabilising agents in the transformation of Ag ions to nanoparticles by Pseudomonas aeruginosa vol.10, pp.5, 2016, https://doi.org/10.1049/iet-nbt.2015.0093
- Rhamnolipid Biosurfactants Produced by Pseudomonas Species vol.59, pp.None, 2016, https://doi.org/10.1590/1678-4324-2016160786
- Agro-Industrial Wastes for Production of Biosurfactant by Bacillus subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.00492
- Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties vol.7, pp.6, 2010, https://doi.org/10.3390/nano7060139
- Chitosan loaded with silver nanoparticles, CS‐AgNPs, using thymus syriacus, wild mint, and rosemary essential oil extracts as reducing and capping agents vol.30, pp.11, 2017, https://doi.org/10.1002/poc.3680
- Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery vol.8, pp.1, 2010, https://doi.org/10.1007/s13205-017-1022-0
- A review on biosynthesis of silver nanoparticles and their biocidal properties vol.16, pp.None, 2010, https://doi.org/10.1186/s12951-018-0334-5
- Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials vol.12, pp.1, 2010, https://doi.org/10.1111/1751-7915.13320
- Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis - a comprehensive review vol.13, pp.3, 2010, https://doi.org/10.1049/iet-nbt.2018.5184
- Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities vol.9, pp.None, 2010, https://doi.org/10.1186/s13568-019-0785-6
- Synthesis and characterization of silver nano particles using co-precipitation method vol.33, pp.p1, 2010, https://doi.org/10.1016/j.matpr.2020.06.029
- Potential Use of Microbial Surfactant in Microemulsion Drug Delivery System: A Systematic Review vol.14, pp.None, 2010, https://doi.org/10.2147/dddt.s232325
- Silver Nanoparticles: Mechanism of Action and Probable Bio-Application vol.11, pp.4, 2010, https://doi.org/10.3390/jfb11040084
- Biosurfactants’ Potential Role in Combating COVID-19 and Similar Future Microbial Threats vol.11, pp.1, 2010, https://doi.org/10.3390/app11010334
- Sonoelectrochemical Synthesis of Antibacterial Active Silver Nanoparticles in Rhamnolipid Solution vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/7754523
- Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.636588
- MHD and Stability for Convective Flow of Micropolar Nanofluid over a Moving and Vertical Permeable Plate vol.408, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/ddf.408.51
- Self-assembly, interfacial properties, interactions with macromolecules and molecular modelling and simulation of microbial bio-based amphiphiles (biosurfactants). A tutorial review vol.23, pp.11, 2010, https://doi.org/10.1039/d1gc00097g
- Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives vol.24, pp.None, 2010, https://doi.org/10.1016/j.eti.2021.102090