References
- Argnani, A., R. J. Leer, N. van Luijk, and P. H. Pouwels. 1996. A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. Microbiology 142 (Pt 1): 109-114. https://doi.org/10.1099/13500872-142-1-109
- Barrangou, R., E. P. Briczinski, L. L. Traeger, J. R. Loquasto, M. Richards, P. Horvath, et al. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J. Bacteriol. 191: 4144-4151. https://doi.org/10.1128/JB.00155-09
- Chen, Q., J. R. Fischer, V. M. Benoit, N. P. Dufour, P. Youderian, and J. M. Leong. 2008. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J. Bacteriol. 190: 7885-7891. https://doi.org/10.1128/JB.00324-08
- Groot, M. N., F. Nieboer, and T. Abee. 2008. Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. Appl. Environ. Microbiol. 74: 7817-7820. https://doi.org/10.1128/AEM.01932-08
- Hayashi, M., Y. Maeda, Y. Hashimoto, and Y. Murooka. 2000. Efficient transformation of Mesorhizobium huakuii subsp. rengei and Rhizobium species. J. Biosci. Bioeng. 89: 550-553. https://doi.org/10.1016/S1389-1723(00)80055-9
- Hobson, N., N. L. Price, J. D. Ward, and T. L. Raivio. 2008. Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids. BMC Microbiol. 8: 134. https://doi.org/10.1186/1471-2180-8-134
- Kantha, D. Arunachalam. 1999. Role of Bifidobacterium in nutrition, medicine and technology. Nutr. Res. 19: 1559-1597. https://doi.org/10.1016/S0271-5317(99)00112-8
- Khosaka, T. and M. Kiwaki. 1984. BinI: A new site-specific endonuclease from Bifidobacterium infantis. Gene 31: 251-255. https://doi.org/10.1016/0378-1119(84)90217-8
- Khosaka, T., M. Kiwaki, and B. Rak. 1983. Two site-specific endonucleases BinSI and BinSII from Bifidobacterium infantis. FEBS Lett. 163: 170-174. https://doi.org/10.1016/0014-5793(83)80812-6
- Khosaka, T., T. Sakurai, H. Takahashi, and H. Saito. 1982. A new site-specific endonuclease BbeI from Bifidobacterium breve. Gene 17: 117-122. https://doi.org/10.1016/0378-1119(82)90063-4
- Kim, H., K. Kwack, D. Y. Kim, and G. E. Ji. 2005. Oral probiotic bacterial administration suppressed allergic responses in an ovalbumin-induced allergy mouse model. FEMS Immunol. Med. Microbiol. 45: 259-267. https://doi.org/10.1016/j.femsim.2005.05.005
- Kim, H., S. Y. Lee, and G. E. Ji. 2005. Timing of bifidobacterium administration influences the development of allergy to ovalbumin in mice. Biotechnol. Lett. 27: 1361-1367. https://doi.org/10.1007/s10529-005-3682-9
- Kim, J. F., H. Jeong, D. S. Yu, S. H. Choi, C. G. Hur, M. S. Park, et al. 2009. Genome sequence of the probiotic bacterium Bifidobacterium animalis subsp. lactis AD011. J. Bacteriol. 191: 678-679. https://doi.org/10.1128/JB.01515-08
- Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209: 243-248. https://doi.org/10.1111/j.1574-6968.2002.tb11138.x
- Lee, J. H. and D. J. O'Sullivan. 2006. Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector. Appl. Environ. Microbiol. 72: 527-535. https://doi.org/10.1128/AEM.72.1.527-535.2006
- Matsumura, H., A. Takeuchi, and Y. Kano. 1997. Construction of Escherichia coli-Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci. Biotechnol. Biochem. 61: 1211-1212. https://doi.org/10.1271/bbb.61.1211
- Matteuzzi, D., P. Brigidi, M. Rossi, and D. Di. 1990. Characterization and molecular cloning of Bifidobacterium longum cryptic plasmid pMB1. Lett. Appl. Microbiol. 11: 220-223. https://doi.org/10.1111/j.1472-765X.1990.tb00165.x
- Missich, R., B. Sgorbati, and D. J. LeBlanc. 1994. Transformation of Bifidobacterium longum with pRM2, a constructed Escherichia coli-B. longum shuttle vector. Plasmid 32: 208-211. https://doi.org/10.1006/plas.1994.1056
- O'Connell Motherway, M., J. O'Driscoll, G. F. Fitzgerald, and D. van Sinderen. 2009. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microbial Biotechnol. 2: 321-332. https://doi.org/10.1111/j.1751-7915.2008.00071.x
- Park, M. S., K. H. Lee, and G. E. Ji. 1997. Isolation and characterization of two plasmids from Bifidobacterium longum. Lett. Appl. Microbiol. 25: 5-7. https://doi.org/10.1046/j.1472-765X.1997.00059.x
- Park, M. S., H. W. Moon, and G. E. Ji. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.
- Rhim, S. L., M. S. Park, and G. E. Ji. 2006. Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum. Biotechnol. Lett. 28: 163-168. https://doi.org/10.1007/s10529-005-5330-9
- Rossi, M., P. Brigidi, A. Gonzalez Vara y Rodriguez, and D. Matteuzzi. 1996. Characterization of the plasmid pMB1 from Bifidobacterium longum and its use for shuttle vector construction. Res. Microbiol. 147: 133-143. https://doi.org/10.1016/0923-2508(96)80213-0
- Schell, M. A., M. Karmirantzou, B. Snel, D. Vilanova, B. Berger, G. Pessi, et al. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. U.S.A. 99: 14422-14427. https://doi.org/10.1073/pnas.212527599
- Sela, D. A., J. Chapman, A. Adeuya, J. H. Kim, F. Chen, T. R. Whitehead, et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105: 18964-18969. https://doi.org/10.1073/pnas.0809584105
- Skrypina, N. A., V. M. Kramarov, A. M. Liannaia, and V. V. Smolianinov. 1988. [Restriction endonucleases from bifidobacteria]. Mol. Gen. Mikrobiol. Virusol: 15-16.
- Yasui, K., Y. Kano, K. Tanaka, K. Watanabe, M. Shimizu- Kadota, H. Yoshikawa, and T. Suzuki. 2009. Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res. 37: e3. https://doi.org/10.1093/nar/gkn884
Cited by
- Progress in genomics, metabolism and biotechnology of bifidobacteria vol.149, pp.1, 2010, https://doi.org/10.1016/j.ijfoodmicro.2011.01.019
- Novel Bifidobacterium Promoters Selected Through Microarray Analysis Lead to Constitutive High-Level Gene Expression vol.50, pp.4, 2010, https://doi.org/10.1007/s12275-012-1591-x
-
Identification of the
${\beta}$ -Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4 vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1208.08028 - Developing an efficient and reproducible conjugation-based gene transfer system for bifidobacteria vol.159, pp.2, 2010, https://doi.org/10.1099/mic.0.061408-0
- Mobilome and genetic modification of bifidobacteria vol.4, pp.2, 2010, https://doi.org/10.3920/bm2012.0031
- Interaction of soil microbes with mycorrhizal fungi in tomato vol.47, pp.6, 2010, https://doi.org/10.1080/03235408.2013.820389
- Diversity, ecology and intestinal function of bifidobacteria vol.13, pp.suppl1, 2010, https://doi.org/10.1186/1475-2859-13-s1-s4
- Identification of Restriction-Modification Systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and Associated Methylome Analysis vol.9, pp.4, 2010, https://doi.org/10.1371/journal.pone.0094875
- High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk vol.25, pp.4, 2010, https://doi.org/10.4014/jmb.1408.08013
- Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1968-4
- Engineering microbial hosts for production of bacterial natural products vol.33, pp.8, 2016, https://doi.org/10.1039/c6np00017g
- Inoculation treatments affect the migration and colonisation of rhizobia in alfalfa (Medicago sativaL.) plants vol.68, pp.3, 2010, https://doi.org/10.1080/09064710.2017.1378710
- Building a genome engineering toolbox in nonmodel prokaryotic microbes vol.115, pp.9, 2010, https://doi.org/10.1002/bit.26727
- A novel DNA methylation motif identified in Bacillus pumilus BA06 and possible roles in the regulation of gene expression vol.104, pp.8, 2010, https://doi.org/10.1007/s00253-020-10475-5