DOI QR코드

DOI QR Code

Improvement of Transformation Efficiency Through In Vitro Methylation and SacII Site Mutation of Plasmid Vector in Bifidobacterium longum MG1

  • Kim, Jin-Yong (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Wang, Yan (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Myeong-Soo (Department of Hotel Culinary Arts, Anyang Technical College) ;
  • Ji, Geun-Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2010.03.08
  • Accepted : 2010.04.10
  • Published : 2010.06.28

Abstract

The different cleavage patterns of pYBamy59 plasmid isolated from E. coli $DH5{\alpha}$ and B. longum MG1 by the cell extract of B. longum MG1 suggested that the main reason for its low transformation efficiency was related to the restriction modification (R-M) system. To confirm the correlation between the R-M system and transformation efficiency, in vitro methylation and site-directed mutagenesis were performed in pYBamy59. Sequence analysis of pYBamy59 fragments digested by the cell extract of B. longum MG1 revealed that all fragments were generated by restriction of the sequence recognized by SacII endonuclease. When pYBamy59 from E. coli was methylated in vitro by CpG or GpC methyltransferase, it was protected from SacII digestion. Site-directed mutagenesis, which removed SacII sites from pYBamy59, or in vitro methylation of pYBamy59 showed 8- to 15-fold increases in the transformation efficiency over intact pYBamy59. Modification of the SacII-related R-M system in B. longum MG1 and in vitro methylation in pYBamy 59 can improve the transformation efficiency in this strain. The results showed that the R-M system is a factor to limit introduction of exogenous DNA, and in vitro modification is a convenient method to overcome the barrier of the R-M system for transformation.

Keywords

References

  1. Argnani, A., R. J. Leer, N. van Luijk, and P. H. Pouwels. 1996. A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. Microbiology 142 (Pt 1): 109-114. https://doi.org/10.1099/13500872-142-1-109
  2. Barrangou, R., E. P. Briczinski, L. L. Traeger, J. R. Loquasto, M. Richards, P. Horvath, et al. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J. Bacteriol. 191: 4144-4151. https://doi.org/10.1128/JB.00155-09
  3. Chen, Q., J. R. Fischer, V. M. Benoit, N. P. Dufour, P. Youderian, and J. M. Leong. 2008. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J. Bacteriol. 190: 7885-7891. https://doi.org/10.1128/JB.00324-08
  4. Groot, M. N., F. Nieboer, and T. Abee. 2008. Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. Appl. Environ. Microbiol. 74: 7817-7820. https://doi.org/10.1128/AEM.01932-08
  5. Hayashi, M., Y. Maeda, Y. Hashimoto, and Y. Murooka. 2000. Efficient transformation of Mesorhizobium huakuii subsp. rengei and Rhizobium species. J. Biosci. Bioeng. 89: 550-553. https://doi.org/10.1016/S1389-1723(00)80055-9
  6. Hobson, N., N. L. Price, J. D. Ward, and T. L. Raivio. 2008. Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids. BMC Microbiol. 8: 134. https://doi.org/10.1186/1471-2180-8-134
  7. Kantha, D. Arunachalam. 1999. Role of Bifidobacterium in nutrition, medicine and technology. Nutr. Res. 19: 1559-1597. https://doi.org/10.1016/S0271-5317(99)00112-8
  8. Khosaka, T. and M. Kiwaki. 1984. BinI: A new site-specific endonuclease from Bifidobacterium infantis. Gene 31: 251-255. https://doi.org/10.1016/0378-1119(84)90217-8
  9. Khosaka, T., M. Kiwaki, and B. Rak. 1983. Two site-specific endonucleases BinSI and BinSII from Bifidobacterium infantis. FEBS Lett. 163: 170-174. https://doi.org/10.1016/0014-5793(83)80812-6
  10. Khosaka, T., T. Sakurai, H. Takahashi, and H. Saito. 1982. A new site-specific endonuclease BbeI from Bifidobacterium breve. Gene 17: 117-122. https://doi.org/10.1016/0378-1119(82)90063-4
  11. Kim, H., K. Kwack, D. Y. Kim, and G. E. Ji. 2005. Oral probiotic bacterial administration suppressed allergic responses in an ovalbumin-induced allergy mouse model. FEMS Immunol. Med. Microbiol. 45: 259-267. https://doi.org/10.1016/j.femsim.2005.05.005
  12. Kim, H., S. Y. Lee, and G. E. Ji. 2005. Timing of bifidobacterium administration influences the development of allergy to ovalbumin in mice. Biotechnol. Lett. 27: 1361-1367. https://doi.org/10.1007/s10529-005-3682-9
  13. Kim, J. F., H. Jeong, D. S. Yu, S. H. Choi, C. G. Hur, M. S. Park, et al. 2009. Genome sequence of the probiotic bacterium Bifidobacterium animalis subsp. lactis AD011. J. Bacteriol. 191: 678-679. https://doi.org/10.1128/JB.01515-08
  14. Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209: 243-248. https://doi.org/10.1111/j.1574-6968.2002.tb11138.x
  15. Lee, J. H. and D. J. O'Sullivan. 2006. Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector. Appl. Environ. Microbiol. 72: 527-535. https://doi.org/10.1128/AEM.72.1.527-535.2006
  16. Matsumura, H., A. Takeuchi, and Y. Kano. 1997. Construction of Escherichia coli-Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci. Biotechnol. Biochem. 61: 1211-1212. https://doi.org/10.1271/bbb.61.1211
  17. Matteuzzi, D., P. Brigidi, M. Rossi, and D. Di. 1990. Characterization and molecular cloning of Bifidobacterium longum cryptic plasmid pMB1. Lett. Appl. Microbiol. 11: 220-223. https://doi.org/10.1111/j.1472-765X.1990.tb00165.x
  18. Missich, R., B. Sgorbati, and D. J. LeBlanc. 1994. Transformation of Bifidobacterium longum with pRM2, a constructed Escherichia coli-B. longum shuttle vector. Plasmid 32: 208-211. https://doi.org/10.1006/plas.1994.1056
  19. O'Connell Motherway, M., J. O'Driscoll, G. F. Fitzgerald, and D. van Sinderen. 2009. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microbial Biotechnol. 2: 321-332. https://doi.org/10.1111/j.1751-7915.2008.00071.x
  20. Park, M. S., K. H. Lee, and G. E. Ji. 1997. Isolation and characterization of two plasmids from Bifidobacterium longum. Lett. Appl. Microbiol. 25: 5-7. https://doi.org/10.1046/j.1472-765X.1997.00059.x
  21. Park, M. S., H. W. Moon, and G. E. Ji. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.
  22. Rhim, S. L., M. S. Park, and G. E. Ji. 2006. Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum. Biotechnol. Lett. 28: 163-168. https://doi.org/10.1007/s10529-005-5330-9
  23. Rossi, M., P. Brigidi, A. Gonzalez Vara y Rodriguez, and D. Matteuzzi. 1996. Characterization of the plasmid pMB1 from Bifidobacterium longum and its use for shuttle vector construction. Res. Microbiol. 147: 133-143. https://doi.org/10.1016/0923-2508(96)80213-0
  24. Schell, M. A., M. Karmirantzou, B. Snel, D. Vilanova, B. Berger, G. Pessi, et al. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. U.S.A. 99: 14422-14427. https://doi.org/10.1073/pnas.212527599
  25. Sela, D. A., J. Chapman, A. Adeuya, J. H. Kim, F. Chen, T. R. Whitehead, et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105: 18964-18969. https://doi.org/10.1073/pnas.0809584105
  26. Skrypina, N. A., V. M. Kramarov, A. M. Liannaia, and V. V. Smolianinov. 1988. [Restriction endonucleases from bifidobacteria]. Mol. Gen. Mikrobiol. Virusol: 15-16.
  27. Yasui, K., Y. Kano, K. Tanaka, K. Watanabe, M. Shimizu- Kadota, H. Yoshikawa, and T. Suzuki. 2009. Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res. 37: e3. https://doi.org/10.1093/nar/gkn884

Cited by

  1. Progress in genomics, metabolism and biotechnology of bifidobacteria vol.149, pp.1, 2010, https://doi.org/10.1016/j.ijfoodmicro.2011.01.019
  2. Novel Bifidobacterium Promoters Selected Through Microarray Analysis Lead to Constitutive High-Level Gene Expression vol.50, pp.4, 2010, https://doi.org/10.1007/s12275-012-1591-x
  3. Identification of the ${\beta}$-Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4 vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1208.08028
  4. Developing an efficient and reproducible conjugation-based gene transfer system for bifidobacteria vol.159, pp.2, 2010, https://doi.org/10.1099/mic.0.061408-0
  5. Mobilome and genetic modification of bifidobacteria vol.4, pp.2, 2010, https://doi.org/10.3920/bm2012.0031
  6. Interaction of soil microbes with mycorrhizal fungi in tomato vol.47, pp.6, 2010, https://doi.org/10.1080/03235408.2013.820389
  7. Diversity, ecology and intestinal function of bifidobacteria vol.13, pp.suppl1, 2010, https://doi.org/10.1186/1475-2859-13-s1-s4
  8. Identification of Restriction-Modification Systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and Associated Methylome Analysis vol.9, pp.4, 2010, https://doi.org/10.1371/journal.pone.0094875
  9. High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk vol.25, pp.4, 2010, https://doi.org/10.4014/jmb.1408.08013
  10. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1968-4
  11. Engineering microbial hosts for production of bacterial natural products vol.33, pp.8, 2016, https://doi.org/10.1039/c6np00017g
  12. Inoculation treatments affect the migration and colonisation of rhizobia in alfalfa (Medicago sativaL.) plants vol.68, pp.3, 2010, https://doi.org/10.1080/09064710.2017.1378710
  13. Building a genome engineering toolbox in nonmodel prokaryotic microbes vol.115, pp.9, 2010, https://doi.org/10.1002/bit.26727
  14. A novel DNA methylation motif identified in Bacillus pumilus BA06 and possible roles in the regulation of gene expression vol.104, pp.8, 2010, https://doi.org/10.1007/s00253-020-10475-5