참고문헌
- Barbas III, C. F., Y. F. Wang, and C. H. Wong. 1990. Deoxyribose-5-phosphate aldolase as a synthetic catalyst. J. Am. Chem. Soc. 112: 2013-2014. https://doi.org/10.1021/ja00161a064
- DeSantis, G., J. Liu, D. P. Clark, A. Heine, I. A. Wilson, and C. H. Wong. 2003. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg. Med. Chem. 11: 43-52. https://doi.org/10.1016/S0968-0896(02)00429-7
- Feron, G., G. Mauvais, F. Martin, E. Sémon, and C. Blin-Per. 2007. Microbial production of 4-hydroxybenzylidine acetone, the direct precursor of raspberry ketone. Lett. Appl. Microbiol. 45: 29-35. https://doi.org/10.1111/j.1472-765X.2007.02147.x
- Hoffee, P. 1975. Deoxyribose-5-phosphate aldolase from Salmonella typhimurium. Methods Enzymol. 42: 276-279. https://doi.org/10.1016/0076-6879(75)42127-9
- Greenberg, W. A., A. Varvak, S. R. Hanson, K. Wong, H. Huang, P. Chen, and M. J. Burk. 2004. Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Natl. Acad. Sci. U.S.A. 101: 5788-5793. https://doi.org/10.1073/pnas.0307563101
- Han, T. K., Z. Zhu, and M. L. Dao. 2004. Identification, molecular cloning, and sequence analysis of a deoxyribose aldolase in Streptococcus mutans GS-5. Curr. Microbiol. 48: 230-236. https://doi.org/10.1007/s00284-003-4159-5
- Heine, A., G. DeSantis, J. G. LuZ, M. Mitchell, C. H. Wong, and I. A. Wilson. 2001. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369-374. https://doi.org/10.1126/science.1063601
-
Heine, A., J. G. Luz, C. H. Wong, and I. A. Wilson. 2004. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99
$\AA$ resolution. J. Mol. Biol. 343: 1019-1034. https://doi.org/10.1016/j.jmb.2004.08.066 - Horinouchi, N., J. Ogawa, T. Sakai, T. Kawano, S. Matsumoto, M. Sasaki, Y. Mikami, and S. Shimizu. 2003. Construction of deoxyriboaldolase-overexpressing Escherichia coli and its application to 2-deoxyribose 5-phosphate synthesis from glucose and acetaldehyde for 2'-deoxyribonucleoside production. Appl. Environ. Microbiol. 69: 3791-3797. https://doi.org/10.1128/AEM.69.7.3791-3797.2003
- Jennewein, S., M. Schurmann, M. Wolberg, I. Hilker, R. Luiten, M. Wubbolts, and D. Mink. 2006. Directed evolution of an industrial biocatalyst: 2-Deoxy-D-ribose 5-phosphate aldolase. Biotechnol. J. 1: 537-548. https://doi.org/10.1002/biot.200600020
- Kim, Y. M., Y. H. Chang, N. S. Choi, Y. O. Kim, J. J. Song, and J. S. Kim. 2009. Cloning, expression, and characterization of a new deoxyribose 5-phosphate aldolase from Yersinia sp. EA015. Protein Expr. Purif. 68: 196-200. https://doi.org/10.1016/j.pep.2009.06.002
- Ogawa, J., K. Saito, T. Sakai, N. Horinouchi, T. Kawano, S. Matsumoto, M. Sasaki, Y. Mikami, and S. Shimizu. 2003. Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2'-deoxyribonucleosides. Biosci. Biotechnol. Biochem. 67: 933-936. https://doi.org/10.1271/bbb.67.933
- Rashid, N., H. Imanaka, T. Fukui, H. Atomi, and T. Imanaka. 2004. Presence of a novel phosphopentamutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Bacteriol. 186: 4185-4191. https://doi.org/10.1128/JB.186.13.4185-4191.2004
- Sakuraba, H., H. Tsuge, I. Shimoya, R. Kawakami, S. Goda, Y. Kawrabayasi, et al. 2003. The first crystal structure of archaeal aldolase. J. Biol. Chem. 278: 10799-10806. https://doi.org/10.1074/jbc.M212449200
- Sakuraba, H., K. Yoneda, K. Yoshihara, K. Satoh, R. Kawakami, Y. Uto, et al. 2007. Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy-D-ribose-5-phosphate aldolase. Appl. Environ. Microbiol. 73: 7427-7434. https://doi.org/10.1128/AEM.01101-07
- Stumpf, P. K. 1947. A colorimetric method for the determination of deoxyribonucleic acid. J. Biol. Chem. 169: 367-371.
- Sukumaran, J. and U. Hanefeld. 2005. Enantioselective C-C bond synthesis catalysed by enzymes. Chem. Soc. Rev. 34: 530-542. https://doi.org/10.1039/b412490a
- Takayama, S., G. J. McGraevy, and C. H. Wong. 1997. Microbial aldolases and transketolases: New biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51: 285-310. https://doi.org/10.1146/annurev.micro.51.1.285
- Wong, C. H., E. Garcia-Junceda, L. Chen, O. Blanco, H. J. M. Gijsen, and D. H. Steensma. 1995. Recombinant 2-deoxyribose-5-phosphate aldolase in organic synthesis: Use of sequential two-substrate and three-substrate aldol reactions. J. Am. Chem. Soc. 117: 3333-3339. https://doi.org/10.1021/ja00117a003
피인용 문헌
- Amino acid-mediated aldolase immobilisation for enhanced catalysis and thermostability vol.35, pp.5, 2010, https://doi.org/10.1007/s00449-011-0670-4
- Cloning and characterisation of a new 2-deoxy-d-ribose-5-phosphate aldolase from Rhodococcus erythropolis vol.161, pp.2, 2010, https://doi.org/10.1016/j.jbiotec.2011.12.018
- Characterization and application of a newly synthesized 2-deoxyribose-5-phosphate aldolase vol.40, pp.1, 2010, https://doi.org/10.1007/s10295-012-1213-y
- Biocatalytic Methods for CC Bond Formation vol.5, pp.6, 2010, https://doi.org/10.1002/cctc.201200709
- Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies vol.7, pp.7, 2010, https://doi.org/10.1039/c5sc04574f
- Evaluation of Antifungal Efficacy of Three New Cyclic Lipopeptides of the Class Bacillomycin from Bacillus subtilis RLID 12.1 vol.62, pp.1, 2010, https://doi.org/10.1128/aac.01457-17
- 2-Deoxy- D -ribose-5-phosphate aldolase (DERA): applications and modifications vol.102, pp.23, 2018, https://doi.org/10.1007/s00253-018-9392-8