DOI QR코드

DOI QR Code

Expression and Characterization of a Novel Deoxyribose 5-Phosphate Aldolase from Paenibacillus sp. EA001

  • Kim, Yong-Mo (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Nack-Shick (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Yong-Ook (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology) ;
  • Son, Dong-Ho (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chang, Young-Hyo (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Song, Jae-Jun (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Joong-Su (Enzyme Fusion Technology Research Team, Molecular Bioprocess Research Center, Jeonbuk Branch Institutee, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2009.12.01
  • Accepted : 2010.02.03
  • Published : 2010.06.28

Abstract

A novel deoC gene was identified from Paenibacillus sp. EA001 isolated from soil. The gene had an open reading frame (ORF) of 663 base pairs encoding a protein of 220 amino acids with a molecular mass of 24.5 kDa. The amino acid sequence was 79% identical to that of deoxyribose 5-phosphate aldolase (DERA) from Geobacillus sp. Y412MC10. The deoC gene encoding DERA was cloned into an expression vector and the protein was expressed in Escherichia coli. The recombinant DERA was purified using Ni-NTA affinity chromatography and then characterized. The optimum temperature and pH of the enzyme were $50^{\circ}C$ and 6.0, respectively. The specific activity for the substrate deoxyribose 5-phosphate (DR5P) was $62\;{\mu}mol/min/mg$. The $K_m$ value for DR5P was determined to be 145 mM with the $k_{cat}$ value of $3.2{\times}10^2/s$ from Lineweaver-Burk plots. The EA001 DERA showed stability toward a high concentration of acetaldehyde (100 mM).

Keywords

References

  1. Barbas III, C. F., Y. F. Wang, and C. H. Wong. 1990. Deoxyribose-5-phosphate aldolase as a synthetic catalyst. J. Am. Chem. Soc. 112: 2013-2014. https://doi.org/10.1021/ja00161a064
  2. DeSantis, G., J. Liu, D. P. Clark, A. Heine, I. A. Wilson, and C. H. Wong. 2003. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg. Med. Chem. 11: 43-52. https://doi.org/10.1016/S0968-0896(02)00429-7
  3. Feron, G., G. Mauvais, F. Martin, E. Sémon, and C. Blin-Per. 2007. Microbial production of 4-hydroxybenzylidine acetone, the direct precursor of raspberry ketone. Lett. Appl. Microbiol. 45: 29-35. https://doi.org/10.1111/j.1472-765X.2007.02147.x
  4. Hoffee, P. 1975. Deoxyribose-5-phosphate aldolase from Salmonella typhimurium. Methods Enzymol. 42: 276-279. https://doi.org/10.1016/0076-6879(75)42127-9
  5. Greenberg, W. A., A. Varvak, S. R. Hanson, K. Wong, H. Huang, P. Chen, and M. J. Burk. 2004. Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Natl. Acad. Sci. U.S.A. 101: 5788-5793. https://doi.org/10.1073/pnas.0307563101
  6. Han, T. K., Z. Zhu, and M. L. Dao. 2004. Identification, molecular cloning, and sequence analysis of a deoxyribose aldolase in Streptococcus mutans GS-5. Curr. Microbiol. 48: 230-236. https://doi.org/10.1007/s00284-003-4159-5
  7. Heine, A., G. DeSantis, J. G. LuZ, M. Mitchell, C. H. Wong, and I. A. Wilson. 2001. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369-374. https://doi.org/10.1126/science.1063601
  8. Heine, A., J. G. Luz, C. H. Wong, and I. A. Wilson. 2004. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 $\AA$ resolution. J. Mol. Biol. 343: 1019-1034. https://doi.org/10.1016/j.jmb.2004.08.066
  9. Horinouchi, N., J. Ogawa, T. Sakai, T. Kawano, S. Matsumoto, M. Sasaki, Y. Mikami, and S. Shimizu. 2003. Construction of deoxyriboaldolase-overexpressing Escherichia coli and its application to 2-deoxyribose 5-phosphate synthesis from glucose and acetaldehyde for 2'-deoxyribonucleoside production. Appl. Environ. Microbiol. 69: 3791-3797. https://doi.org/10.1128/AEM.69.7.3791-3797.2003
  10. Jennewein, S., M. Schurmann, M. Wolberg, I. Hilker, R. Luiten, M. Wubbolts, and D. Mink. 2006. Directed evolution of an industrial biocatalyst: 2-Deoxy-D-ribose 5-phosphate aldolase. Biotechnol. J. 1: 537-548. https://doi.org/10.1002/biot.200600020
  11. Kim, Y. M., Y. H. Chang, N. S. Choi, Y. O. Kim, J. J. Song, and J. S. Kim. 2009. Cloning, expression, and characterization of a new deoxyribose 5-phosphate aldolase from Yersinia sp. EA015. Protein Expr. Purif. 68: 196-200. https://doi.org/10.1016/j.pep.2009.06.002
  12. Ogawa, J., K. Saito, T. Sakai, N. Horinouchi, T. Kawano, S. Matsumoto, M. Sasaki, Y. Mikami, and S. Shimizu. 2003. Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2'-deoxyribonucleosides. Biosci. Biotechnol. Biochem. 67: 933-936. https://doi.org/10.1271/bbb.67.933
  13. Rashid, N., H. Imanaka, T. Fukui, H. Atomi, and T. Imanaka. 2004. Presence of a novel phosphopentamutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Bacteriol. 186: 4185-4191. https://doi.org/10.1128/JB.186.13.4185-4191.2004
  14. Sakuraba, H., H. Tsuge, I. Shimoya, R. Kawakami, S. Goda, Y. Kawrabayasi, et al. 2003. The first crystal structure of archaeal aldolase. J. Biol. Chem. 278: 10799-10806. https://doi.org/10.1074/jbc.M212449200
  15. Sakuraba, H., K. Yoneda, K. Yoshihara, K. Satoh, R. Kawakami, Y. Uto, et al. 2007. Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy-D-ribose-5-phosphate aldolase. Appl. Environ. Microbiol. 73: 7427-7434. https://doi.org/10.1128/AEM.01101-07
  16. Stumpf, P. K. 1947. A colorimetric method for the determination of deoxyribonucleic acid. J. Biol. Chem. 169: 367-371.
  17. Sukumaran, J. and U. Hanefeld. 2005. Enantioselective C-C bond synthesis catalysed by enzymes. Chem. Soc. Rev. 34: 530-542. https://doi.org/10.1039/b412490a
  18. Takayama, S., G. J. McGraevy, and C. H. Wong. 1997. Microbial aldolases and transketolases: New biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51: 285-310. https://doi.org/10.1146/annurev.micro.51.1.285
  19. Wong, C. H., E. Garcia-Junceda, L. Chen, O. Blanco, H. J. M. Gijsen, and D. H. Steensma. 1995. Recombinant 2-deoxyribose-5-phosphate aldolase in organic synthesis: Use of sequential two-substrate and three-substrate aldol reactions. J. Am. Chem. Soc. 117: 3333-3339. https://doi.org/10.1021/ja00117a003

Cited by

  1. Amino acid-mediated aldolase immobilisation for enhanced catalysis and thermostability vol.35, pp.5, 2010, https://doi.org/10.1007/s00449-011-0670-4
  2. Cloning and characterisation of a new 2-deoxy-d-ribose-5-phosphate aldolase from Rhodococcus erythropolis vol.161, pp.2, 2010, https://doi.org/10.1016/j.jbiotec.2011.12.018
  3. Characterization and application of a newly synthesized 2-deoxyribose-5-phosphate aldolase vol.40, pp.1, 2010, https://doi.org/10.1007/s10295-012-1213-y
  4. Biocatalytic Methods for CC Bond Formation vol.5, pp.6, 2010, https://doi.org/10.1002/cctc.201200709
  5. Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies vol.7, pp.7, 2010, https://doi.org/10.1039/c5sc04574f
  6. Evaluation of Antifungal Efficacy of Three New Cyclic Lipopeptides of the Class Bacillomycin from Bacillus subtilis RLID 12.1 vol.62, pp.1, 2010, https://doi.org/10.1128/aac.01457-17
  7. 2-Deoxy- D -ribose-5-phosphate aldolase (DERA): applications and modifications vol.102, pp.23, 2018, https://doi.org/10.1007/s00253-018-9392-8