DOI QR코드

DOI QR Code

Methyl-Branched Fatty Acids, Inhibitors of Enoyl-ACP Reductase with Antibacterial Activity from Streptomyces sp. A251

  • Zheng, Chang-Ji (Korea Research Institute of Bioscience and Biotechnology) ;
  • Sohn, Mi-Jin (Korea Research Institute of Bioscience and Biotechnology) ;
  • Chi, Seung-Wook (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Won-Gon (Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2010.01.08
  • Accepted : 2010.02.05
  • Published : 2010.05.28

Abstract

Bacterial enoyl-ACP reductase (FabI) has been demonstrated to be a novel antibacterial target. In the course of our screening for FabI inhibitors, we isolated two methyl-branched fatty acids from Streptomyces sp. A251. They were identified as 14-methyl-9(Z)-pentadecenoic acid and 15-methyl-9(Z)-hexadecenoic acid by MS and NMR spectral data. These compounds inhibited Staphylococcus aureus FabI with $IC_{50}$ values of 16.0 and $16.3\;{\mu}M$, respectively, but did not affect FabK, an enoyl-ACP reductase of Streptococcus pneumonia, at $100\;{\mu}M$. Consistent with their selective inhibition for FabI, they blocked intracellular fatty acid synthesis as well as the growth of S. aureus, but did not inhibit the growth of S. pneumonia. Additionally, these compounds showed reduced antibacterial activity against fabI-overexpressing S. aureus, compared with the wild-type strain. These results demonstrate that the methylbranched fatty acids show antibacterial activity by inhibiting FabI in vivo.

Keywords

References

  1. Campbell, J. W. and J. E. Cronan. 2001. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55: 305-332. https://doi.org/10.1146/annurev.micro.55.1.305
  2. Carballeira, N. M., H. Cruz, C. A. Hill, J. J. De Voss, and M. Garson. 2001. Identification and total synthesis of novel fatty acids from the siphonarid limpet Siphonaria denticulata. J. Nat. Prod. 64: 1426-1429. https://doi.org/10.1021/np010307r
  3. Carballeira, N. M., E. D. Reyes, and F. Shalabi. 1993. Identification of novel iso/anteiso nonacosadienoic acids from the phospholipids of the sponges Chondrosia remiformis and Myrmekioderma styx. J. Nat. Prod. 56: 1850-1855. https://doi.org/10.1021/np50100a032
  4. Carballeira, N. M., D. Sanabria, N. L. Ayala, and C. Cruz. 2004. A stereoselective synthesis for the (5Z,9Z)-14-methyl- 5,9-pentadecadienoic acid and its monounsaturated analog (Z)- 14-methyl-9-pentadecenoic acid. Tetrahedron Lett. 45: 3761-3763. https://doi.org/10.1016/j.tetlet.2004.03.078
  5. Dunkelblum, E., S. H. Tan, and P. J. Silk. 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four Lepidoptera. J. Chem. Ecol. 11: 265-277. https://doi.org/10.1007/BF01411414
  6. Heath, R. J., J. R. Rubin, D. R. Holland, E. Zhang, M. E. Snow, and C. O. Rock. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274: 11110-11114. https://doi.org/10.1074/jbc.274.16.11110
  7. Heath, R. J. and C. O. Rock. 2004. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs 5: 146-153.
  8. Heerding, D. A., G. Chan, W. E. DeWolf Jr., A. P. Fosberry, C. A. Janson, D. D. Jaworski, et al. 2002. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier reductase (FabI). Bioorg. Med. Chem. Lett. 11: 2061-2065.
  9. Levy, S. B. and B. Marshall. 2004. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 10: 122-129. https://doi.org/10.1038/nm0204-122
  10. Ling, L. L., J. Xian, S. Ali, B. Geng, J. Fan, D. M. Mills, et al. 2004. Identification and characterization of inhibitors of bacterial enoyl-acyl carrier protein reductase. Antimicrob. Agents. Chemother. 48: 1541-1547. https://doi.org/10.1128/AAC.48.5.1541-1547.2004
  11. McMurry, L. M., M. Oethinger, and S. B. Levy. 1998. Triclosan targets lipid synthesis. Nature 394: 531-532. https://doi.org/10.1038/28970
  12. Miesel, L., J. Greene, and T. A. Black. 2003. Genetic strategies for antibacterial drug discovery. Nat. Rev. Genet. 4: 442-456.
  13. Miller, W. H., M. A. Seefeld, K. A. Newlander, I. N. Uzinskas, W. J. Burgess, D. A. Heerding, et al. 2002. Discovery of aminopyridine-based inhibitors of bacterial enoyl-ACP reductase (FabI). J. Med. Chem. 45: 3246-3256. https://doi.org/10.1021/jm020050+
  14. Payne, D. J., W. H. Miller, V. Berry, J. Brosky, W. J. Burgess, E. Chen, et al. 2002. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46: 3118-3142. https://doi.org/10.1128/AAC.46.10.3118-3124.2002
  15. Pfeltz, R. F. and B. J. Wilkinson. 2004. The escalating challenge of vancomycin resistance in Staphylococcus aureus. Curr. Drug Targets Infect. Disord. 4: 273-294. https://doi.org/10.2174/1568005043340470
  16. Seefeld, M. A., W. H. Miller, K. A. Newlander, W. J. Burgess, De Wolf Jr., W. E. Elkins, et al. 2003. Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK. J. Med. Chem. 46: 1627-1635. https://doi.org/10.1021/jm0204035
  17. Singh, M. P. and M. Greenstein. 2000. Antibacterial leads from microbial natural products discovery. Curr. Opin. Drug Discov. Develop. 3: 167-176.
  18. Sivaraman, S., J. Zwahlen, A. F. Bell, L. Hedstrom, and P. J. Tonge. 2003. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: Kinetic analysis of mutant FabIs. Biochemistry 42: 4406-4413. https://doi.org/10.1021/bi0300229
  19. Slater-Radosti, C., G. Van-Aller, R. Greenwood, R. Nicholas, P. M. Keller, W. E. De Wolf Jr., F. Fan, D. J. Payne, and D. D. Jaworski. 2001. Biochemical and genetic characterisation of the action of triclosan on Staphylococcus aureus. J. Antimicrob. Chemother. 48: 1-6. https://doi.org/10.1093/jac/48.1.1
  20. Sohn, M. J., C. J. Zheng, and W. G. Kim. 2008. Macrolactin S, a new antibacterial agent with FabG-inhibitory activity from Bacillus sp. AT28. J. Antibiot. 61: 687-691. https://doi.org/10.1038/ja.2008.98
  21. Tasdemir, D., G. Lack, R. Brun, P. Ruedi, L. Scapozza, and R. Perozzo. 2006. Inhibition of Plasmodium falciparum fatty acid biosynthesis: Evaluation of FabG, FabZ, and FabI and drug targets for flavonoids. J. Med. Chem. 49: 3345-3353. https://doi.org/10.1021/jm0600545
  22. Wang, J., S. M. Soisson, K. Young, W. Shoop, S. Kodali, A. Galgoci, et al. 2006. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441: 358-361. https://doi.org/10.1038/nature04784
  23. Zhang, Y. M. and C. O. Rock. 2004. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J. Biol. Chem. 279: 30994-31001. https://doi.org/10.1074/jbc.M403697200
  24. Zhang, Y. M., S. W. White, and C. O. Rock. 2006. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281: 17541-17544. https://doi.org/10.1074/jbc.R600004200
  25. Zheng, C. J., M. J. Sohn, and W. G. Kim. 2007. Atromentin and leucomelone, the first inhibitors specific to enoyl-ACP reductase (FabK) of Streptococcus pneumonia. J. Antibiot. 59: 808-812.
  26. Zheng, C. J., M. J. Sohn, S. Lee, Y. S. Hong, J. H. Kwak, and W. G. Kim. 2007. Cephalochromin, a FabI-directed antibacterial of microbial origin. Biochem. Biophys. Res. Commun. 362: 1107-1112. https://doi.org/10.1016/j.bbrc.2007.08.144
  27. Zheng, C. J., M. J. Sohn, and W. G. Kim. 2009. Vinaxanthone, a new FabI inhibitor from Penicillium sp. J. Antimicrob. Chemother. 63: 949-953. https://doi.org/10.1093/jac/dkp058

Cited by

  1. Recent advances in inhibitors of bacterial fatty acid synthesis type???II (FASII) system enzymes as potential antibacterial agents. vol.8, pp.10, 2010, https://doi.org/10.1002/cmdc.201300209
  2. Panosialins, Inhibitors of Enoyl-ACP Reductase from Streptomyces sp. AN1761 vol.23, pp.2, 2013, https://doi.org/10.4014/jmb.1209.09038
  3. Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp. NP10 vol.99, pp.11, 2015, https://doi.org/10.1007/s00253-014-6364-5
  4. Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products vol.61, pp.8, 2010, https://doi.org/10.1128/aac.00743-17
  5. Genomics-Based Insights Into the Biosynthesis and Unusually High Accumulation of Free Fatty Acids by Streptomyces sp. NP10 vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.01302
  6. FabI (enoyl acyl carrier protein reductase) - A potential broad spectrum therapeutic target and its inhibitors vol.208, pp.None, 2010, https://doi.org/10.1016/j.ejmech.2020.112757