References
- Campbell, J. W. and J. E. Cronan. 2001. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55: 305-332. https://doi.org/10.1146/annurev.micro.55.1.305
- Carballeira, N. M., H. Cruz, C. A. Hill, J. J. De Voss, and M. Garson. 2001. Identification and total synthesis of novel fatty acids from the siphonarid limpet Siphonaria denticulata. J. Nat. Prod. 64: 1426-1429. https://doi.org/10.1021/np010307r
- Carballeira, N. M., E. D. Reyes, and F. Shalabi. 1993. Identification of novel iso/anteiso nonacosadienoic acids from the phospholipids of the sponges Chondrosia remiformis and Myrmekioderma styx. J. Nat. Prod. 56: 1850-1855. https://doi.org/10.1021/np50100a032
- Carballeira, N. M., D. Sanabria, N. L. Ayala, and C. Cruz. 2004. A stereoselective synthesis for the (5Z,9Z)-14-methyl- 5,9-pentadecadienoic acid and its monounsaturated analog (Z)- 14-methyl-9-pentadecenoic acid. Tetrahedron Lett. 45: 3761-3763. https://doi.org/10.1016/j.tetlet.2004.03.078
- Dunkelblum, E., S. H. Tan, and P. J. Silk. 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four Lepidoptera. J. Chem. Ecol. 11: 265-277. https://doi.org/10.1007/BF01411414
- Heath, R. J., J. R. Rubin, D. R. Holland, E. Zhang, M. E. Snow, and C. O. Rock. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274: 11110-11114. https://doi.org/10.1074/jbc.274.16.11110
- Heath, R. J. and C. O. Rock. 2004. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs 5: 146-153.
- Heerding, D. A., G. Chan, W. E. DeWolf Jr., A. P. Fosberry, C. A. Janson, D. D. Jaworski, et al. 2002. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier reductase (FabI). Bioorg. Med. Chem. Lett. 11: 2061-2065.
- Levy, S. B. and B. Marshall. 2004. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 10: 122-129. https://doi.org/10.1038/nm0204-122
- Ling, L. L., J. Xian, S. Ali, B. Geng, J. Fan, D. M. Mills, et al. 2004. Identification and characterization of inhibitors of bacterial enoyl-acyl carrier protein reductase. Antimicrob. Agents. Chemother. 48: 1541-1547. https://doi.org/10.1128/AAC.48.5.1541-1547.2004
- McMurry, L. M., M. Oethinger, and S. B. Levy. 1998. Triclosan targets lipid synthesis. Nature 394: 531-532. https://doi.org/10.1038/28970
- Miesel, L., J. Greene, and T. A. Black. 2003. Genetic strategies for antibacterial drug discovery. Nat. Rev. Genet. 4: 442-456.
- Miller, W. H., M. A. Seefeld, K. A. Newlander, I. N. Uzinskas, W. J. Burgess, D. A. Heerding, et al. 2002. Discovery of aminopyridine-based inhibitors of bacterial enoyl-ACP reductase (FabI). J. Med. Chem. 45: 3246-3256. https://doi.org/10.1021/jm020050+
- Payne, D. J., W. H. Miller, V. Berry, J. Brosky, W. J. Burgess, E. Chen, et al. 2002. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46: 3118-3142. https://doi.org/10.1128/AAC.46.10.3118-3124.2002
- Pfeltz, R. F. and B. J. Wilkinson. 2004. The escalating challenge of vancomycin resistance in Staphylococcus aureus. Curr. Drug Targets Infect. Disord. 4: 273-294. https://doi.org/10.2174/1568005043340470
- Seefeld, M. A., W. H. Miller, K. A. Newlander, W. J. Burgess, De Wolf Jr., W. E. Elkins, et al. 2003. Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK. J. Med. Chem. 46: 1627-1635. https://doi.org/10.1021/jm0204035
- Singh, M. P. and M. Greenstein. 2000. Antibacterial leads from microbial natural products discovery. Curr. Opin. Drug Discov. Develop. 3: 167-176.
- Sivaraman, S., J. Zwahlen, A. F. Bell, L. Hedstrom, and P. J. Tonge. 2003. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: Kinetic analysis of mutant FabIs. Biochemistry 42: 4406-4413. https://doi.org/10.1021/bi0300229
- Slater-Radosti, C., G. Van-Aller, R. Greenwood, R. Nicholas, P. M. Keller, W. E. De Wolf Jr., F. Fan, D. J. Payne, and D. D. Jaworski. 2001. Biochemical and genetic characterisation of the action of triclosan on Staphylococcus aureus. J. Antimicrob. Chemother. 48: 1-6. https://doi.org/10.1093/jac/48.1.1
- Sohn, M. J., C. J. Zheng, and W. G. Kim. 2008. Macrolactin S, a new antibacterial agent with FabG-inhibitory activity from Bacillus sp. AT28. J. Antibiot. 61: 687-691. https://doi.org/10.1038/ja.2008.98
- Tasdemir, D., G. Lack, R. Brun, P. Ruedi, L. Scapozza, and R. Perozzo. 2006. Inhibition of Plasmodium falciparum fatty acid biosynthesis: Evaluation of FabG, FabZ, and FabI and drug targets for flavonoids. J. Med. Chem. 49: 3345-3353. https://doi.org/10.1021/jm0600545
- Wang, J., S. M. Soisson, K. Young, W. Shoop, S. Kodali, A. Galgoci, et al. 2006. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441: 358-361. https://doi.org/10.1038/nature04784
- Zhang, Y. M. and C. O. Rock. 2004. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J. Biol. Chem. 279: 30994-31001. https://doi.org/10.1074/jbc.M403697200
- Zhang, Y. M., S. W. White, and C. O. Rock. 2006. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281: 17541-17544. https://doi.org/10.1074/jbc.R600004200
- Zheng, C. J., M. J. Sohn, and W. G. Kim. 2007. Atromentin and leucomelone, the first inhibitors specific to enoyl-ACP reductase (FabK) of Streptococcus pneumonia. J. Antibiot. 59: 808-812.
- Zheng, C. J., M. J. Sohn, S. Lee, Y. S. Hong, J. H. Kwak, and W. G. Kim. 2007. Cephalochromin, a FabI-directed antibacterial of microbial origin. Biochem. Biophys. Res. Commun. 362: 1107-1112. https://doi.org/10.1016/j.bbrc.2007.08.144
- Zheng, C. J., M. J. Sohn, and W. G. Kim. 2009. Vinaxanthone, a new FabI inhibitor from Penicillium sp. J. Antimicrob. Chemother. 63: 949-953. https://doi.org/10.1093/jac/dkp058
Cited by
- Recent advances in inhibitors of bacterial fatty acid synthesis type???II (FASII) system enzymes as potential antibacterial agents. vol.8, pp.10, 2010, https://doi.org/10.1002/cmdc.201300209
- Panosialins, Inhibitors of Enoyl-ACP Reductase from Streptomyces sp. AN1761 vol.23, pp.2, 2013, https://doi.org/10.4014/jmb.1209.09038
- Structural diversity and possible functional roles of free fatty acids of the novel soil isolate Streptomyces sp. NP10 vol.99, pp.11, 2015, https://doi.org/10.1007/s00253-014-6364-5
- Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products vol.61, pp.8, 2010, https://doi.org/10.1128/aac.00743-17
- Genomics-Based Insights Into the Biosynthesis and Unusually High Accumulation of Free Fatty Acids by Streptomyces sp. NP10 vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.01302
- FabI (enoyl acyl carrier protein reductase) - A potential broad spectrum therapeutic target and its inhibitors vol.208, pp.None, 2010, https://doi.org/10.1016/j.ejmech.2020.112757