DOI QR코드

DOI QR Code

Effects of Ultra High Molecular Weight Poly-${\gamma}$-glutamic Acid from Bacillus subtilis (chungkookjang) on Corneal Wound Healing

  • Received : 2009.11.19
  • Accepted : 2010.01.09
  • Published : 2010.04.28

Abstract

Poly-${\gamma}$-glutamic acid (${\gamma}$-PGA) is a natural edible polypeptide in which glutamate is polymerized via ${\gamma}$-amide linkages. First, we assessed the eye irritancy potential of ${\gamma}$-PGA in rabbits. Additionally, we studied the effects of ${\gamma}$-PGA on corneal wound healing, due to the anti-inflammatory properties and water retaining abilities of ${\gamma}$-PGA. In this study, the effects of ${\gamma}$-PGA on corneal wound healing after an alkali burn were evaluated. Thirty eyes wounded by alkali burning in 30 white rabbits were divided into three groups: group A was treated with 0.1% 5,000 kDa ${\gamma}$-PGA for 2 days; group B was treated with 0.1% hyaluronic acid; and group C was not treated, as a control. The area of corneal epithelial defect was examined at 12, 24, 30, 36, 42, and 48 h after corneal alkali wounding to determine initial wound healing. We found that ${\gamma}$-PGA promoted corneal wound healing, compared with controls, and showed similar effects to hyaluronic acid. These results indicate that ${\gamma}$-PGA stimulates corneal wound healing by an anti-inflammatory effect and enhancing cell migration and cell proliferation. ${\gamma}$-PGA is a promising biomaterial that may be a substitute for hyaluronic acid in corneal wound healing treatment.

Keywords

References

  1. Aono, R. 1987. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Preparation of poly (gamma-L-glutamate) from cell wall component. Biochem. J. 245: 467-472.
  2. Ashiuchi, M. and H. Misono. 2002. Poly-$\gamma$-glutamic acid, pp. 123-174. In S. R. Fahnestock and A. Steinbuchel (eds.). Biopolymers Wiley-VCH, Weinheim.
  3. Brazzell, R. K., M. E. Stern, J. V. Aquavello, and R. W. Beuerman. 1991. Human recombinant epidermal growth factor in experimental corneal wound healing. Invest. Ophthalmol. Vis. Sci. 32: 336-340.
  4. Buescher, J. M. and A. Margaritis. 2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 2: 1-19.
  5. Chung, J. H., P. Fagerholm, and B. Lindstrom. 1987. The behaviour of corneal epithelium following a standardized alkali wound. Acta Ophthalmol. 65: 529-537.
  6. Chung, J. H. and P. Fagerholm. 1987. Endothelial healing in rabbit corneal alkali wounds. Acta Ophthalmol. 65: 648-656.
  7. Chung, J. H. 1988. Experimental corneal alkali wound healing. Acta Ophthalmol. 66: 1-35.
  8. Chung, J. H., P. Fagerholm, and B. Lindstrom. 1989. Hyaluronate in healing of corneal alkali wound in the rabbit. Exp. Eye Res. 48: 569-576. https://doi.org/10.1016/0014-4835(89)90039-0
  9. Chung, J. H., W. K. Kim, J. S. Lee, Y. S. Pae, and H. J. Kim. 1998. Effect of topical Na-hyaluronan on hemidesmosome formation in n-heptanol-induced corneal injury. Ophthalmic Res. 30: 96-100. https://doi.org/10.1159/000055460
  10. Conrad, G., C. Hamilton, and E. Haynes. 1977. Differences in glycosaminoglycans synthesized by fibroblast-like cells from chick cornea, heart and skin. J. Biol. Chem. 252: 6861-6870.
  11. Dahl, I. 1981. Biosynthesis of proteoglycans and hyaluronate in rabbit corneal fibroblast cultures: Variation with age of the cell line and effect of fetal calf serum. Exp. Eye Res. 32: 419-433. https://doi.org/10.1016/S0014-4835(81)80021-8
  12. DeLuise, V. P. and W. S. Peterson. 1984. The use of topical Healon tears in the management of refractory dry-eye syndrome. Ann. Ophthalmol. 16: 823-824.
  13. Draize, J. H. 1959. Appraisal of the safety of chemicals in foods, drugs and cosmetics, pp. 46-59. The Association of Food and Drug Officials of the United States, Topeka, Kansas. 46-59.
  14. Hibbs, M. S., K. A. Hasty, J. M. Seyer, A. H. Kang, and C. L. Mainardi. 1985. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J. Biol. Chem. 260: 2493-2500.
  15. Inoue, M. and C. Katakami. 1993. The effect of hyaluronic acid on corneal epithelial cell proliferation. Invest. Ophthalmol. Vis. Sci. 34: 22313-22315.
  16. Kang, S. E., J. H. Rhee, C. Park, M. H. Sung, and I. H. Lee. 2005. Distribution of poly $\gamma$-glutamate ($\gamma$-PGA) producers in Korean fermented foods, cheongkukjang, doenjang, and kochujang. Food Sci. Biotechnol. 14: 704-708.
  17. Kay, J. H. and J. C. Calandra, 1962. Interpretation of eye irritation tests. J. Soc. Cosmet. Chem. 13: 281-289.
  18. Kim, T. W., T. Y. Lee, H. C. Bae, J. H. Hahm, Y. H. Kim, C. Park, et al. 2007. Oral administration of high molecular weight poly-gamma-glutamate induces NK cell-mediated antitumor immunity. J. Immunol. 179: 775-780.
  19. Lee, T. Y., Y. H. Kim, S. W. Yoon, J. C. Choi, J. M. Yang, C. J. Kim, J. T. Schiller, M. H. Sung, and H. Poo. 2009. Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol. Immunother. 58: 1781-1794. https://doi.org/10.1007/s00262-009-0689-4
  20. Makino, S., I. Uchida, N. Terakado, C. Sasakawa, and M. Yoshikawa. 1989. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 171: 722-730.
  21. Nakamura, M., N. Sato, T. I. Chikami, Y. Hasegawa, and T. Nishida. 1997. Hyaluronan facilitates corneal epithelial wound healing in diabetic rats. Exp. Eye Res. 64: 1043-1050. https://doi.org/10.1006/exer.1997.0302
  22. Nishida, T. and M. Nakamura. 1991. Hyaluronate stimulates corneal epithelial migration. Exp. Eye Res. 53: 753-758. https://doi.org/10.1016/0014-4835(91)90110-Z
  23. Perez-Camero, G., F. Congregado, J. J. Bou, and S. Munoz-Guerra. 1999. Biosynthesis and ultrasonic degradation of bacterial poly(gamma-glutamic acid). Biotechnol. Bioeng. 63: 110-115. https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<110::AID-BIT11>3.0.CO;2-T
  24. Pfister, R. R., J. L. Haddox, R. W. Dodson, and L. E. Harkins. 1987. Alkali-burned collagen produces a locomotor and metabolic stimulant to neutrophils. Invest. Ophthalmol. Vis. Sci. 28: 295-304.
  25. Pfister, R. R., J. L. Haddox, K. W. Lam, and K. M. Lank. 1988. Preliminary characterization of a polymorphonuclear leukocyte stimulation isolated from alkali-treated collagen. Invest. Ophthalmol. Vis. Sci. 29: 955-962.
  26. Reim, M. and V. Lenz. 1984. Behandlung von schweren Veratzungen mit hochpolymerer Hyaluronsaure (Healon). Fortschr. Ophthalmol. 8: 323-325.
  27. Saric, D. and M. Reim. 1984. Behandlung von Veratzungen des vorderen Augenabschnitts mit hoch polymerem Na-Hyaluronat (Healon). Fortschr. Ophthalmol. 8: 588-591.
  28. Schultz, G. S., S. Strelow, G. A. Stern, N. Chegini, M. B. Grant, R. E. Galardy, et al. 1992. Treatment of alkali-injured rabbit corneas with a synthetic inhibitor of matrix metallo-proteinase. Invest. Ophthalmol. Vis. Sci. 33: 3325-3331.
  29. Stuart, J. C. and J. G. Linn. 1985. Dilute sodium hyaluronate (Healon) in the treatment of ocular surface disorders. Ann. Ophthalmol. 17: 190-192.
  30. Sung, M. H., C. Park, C. J. Kim, H. Poo, K. Soda, and M. Ashiuchi. 2005. Natural and Edible biopolymer Poly-g-glutamic Acid: Synthesis, Production and its Applications. The Chemical Record. 5: 352-366. https://doi.org/10.1002/tcr.20061
  31. Toole, B. P. 1976. Morphogenetic role of glycosaminoglycans (acid mucopolysaccharides) in brain and other tissue, pp. 275-329. In S. H. Baronders (ed.). Neural Recognition. Plenum Press, New York.
  32. Wysenbeek, Y. S., N. Loya, I. Ben Sira, I. Ophir, and Y. Ben Shaul. 1988. The effect of sodium hyaluronate on the corneal epithelium: An ultrastructural study. Invest. Ophthalmol. Vis. Sci. 29: 194-199.
  33. Yue, B., J. Baum, and J. Silbert. 1978. Synthesis of glycosaminoglycans by cultures of normal human corneal endothelial and stromal cells. Invest. Ophthalmol. Vis. Sci. 17: 523-527.

Cited by

  1. Chelation of Calcium Ions by Poly(${\gamma}$-Glutamic Acid) from Bacillus subtilis (Chungkookjang) vol.20, pp.10, 2010, https://doi.org/10.4014/jmb.1004.04043
  2. Multifunctional gentamicin supplementation of poly(γ‐glutamic acid)‐based hydrogels for wound dressing application vol.120, pp.2, 2011, https://doi.org/10.1002/app.33249
  3. Light and electron microscopic study on the effect of topically applied hyaluronic acid on experimentally induced corneal alkali burn in albino rats : vol.34, pp.4, 2010, https://doi.org/10.1097/01.ehx.0000407699.63226.2a
  4. Synthesis and High Performance of Magnetofluorescent Polyelectrolyte Nanocomposites as MR/Near-Infrared Multimodal Cellular Imaging Nanoprobes vol.5, pp.10, 2011, https://doi.org/10.1021/nn202912b
  5. Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1208.08031
  6. Human Adipose-Derived Stem Cells for the Treatment of Chemically Burned Rat Cornea: Preliminary Results vol.38, pp.4, 2010, https://doi.org/10.3109/02713683.2012.763100
  7. Fabrication of Poly(${\gamma}$-glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application vol.23, pp.7, 2010, https://doi.org/10.4014/jmb.1302.02030
  8. Composition and characterization of in situ usable light cured dental drug delivery hydrogel system vol.24, pp.3, 2010, https://doi.org/10.1007/s10856-012-4825-x
  9. Efficacy of l-proline administration on the early responses during cutaneous wound healing in rats vol.45, pp.1, 2010, https://doi.org/10.1007/s00726-013-1486-0
  10. The Antiviral Effect of High-Molecular Weight Poly-Gamma-Glutamate against Newcastle Disease Virus on Murine Macrophage Cells vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/301386
  11. Formation of iron oxide nanoparticle-loaded γ-polyglutamic acid nanogels for MR imaging of tumors vol.3, pp.44, 2010, https://doi.org/10.1039/c5tb01854d
  12. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury vol.48, pp.11, 2010, https://doi.org/10.5483/bmbrep.2015.48.11.041
  13. Raspberry-like poly(γ-glutamic acid) hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs vol.11, pp.None, 2016, https://doi.org/10.2147/ijn.s117862
  14. Preliminary investigation on a new natural based poly(gamma‐glutamic acid)/Chitosan bioink vol.108, pp.7, 2010, https://doi.org/10.1002/jbm.b.34602