DOI QR코드

DOI QR Code

Heterotrophic Bacterial Growth on Hoses in a Neonatal Water Distribution System

  • Buffet-Bataillon, Sylvie (Service de Bacteriologie, Virologie et Hygiene Hospitaliere, Pole Microorganismes et Hygiene Hospitaliere) ;
  • Bonnaure-Mallet, Martine (Service de Bacteriologie, Virologie et Hygiene Hospitaliere, Pole Microorganismes et Hygiene Hospitaliere) ;
  • De La Pintiere, Armelle (Unite de Neonatalogie, Pole Medecine de l'Enfant et de l'Adolescent) ;
  • Defawe, Guy (Unite de Neonatalogie, Pole Medecine de l'Enfant et de l'Adolescent) ;
  • Gautier-Lerestif, Anne Lise (Equipe de Microbiologie, EA 1254, Universite de Rennes 1, Universite Europeenne de Bretagne) ;
  • Fauveau, Severine (Service de Bacteriologie, Virologie et Hygiene Hospitaliere, Pole Microorganismes et Hygiene Hospitaliere) ;
  • Minet, Jacques (Service de Bacteriologie, Virologie et Hygiene Hospitaliere, Pole Microorganismes et Hygiene Hospitaliere)
  • Received : 2009.06.22
  • Accepted : 2009.09.24
  • Published : 2010.04.28

Abstract

After preliminary tests indicated an increased number of heterotrophic bacteria, we investigated possible sources of contamination in a neonatal intensive care unit (NICU) water distribution system. Scanning electron microscopic examination of flexible metallic hoses associated with the system revealed the presence of a biofilm; partial 16S rDNA sequencing revealed that the biofilm contained Blastomonas natatoria. Purgation of the water system three times a day, reinforced faucet cleaning, decreasing the cold water temperature to $12^{\circ}C$, and six repeated chlorinations at concentrations as high as 2 mg/l were not sufficient to eradicate the bacterial contamination. Replacing all of the rubber-interior flexible metallic hoses with teflon-lined hoses, followed by heating the water to $70^{\circ}C$, successfully controlled the bacteria.

Keywords

References

  1. Barrell, R. A., P. R. Hunter, and G. Nichols. 2000. Microbiological standards for water and their relationship to health risk. Commun. Dis. Public Health 3: 8-13.
  2. Connell, G. H. 1996. The Chlorination/Chloramination Handbook. American Water Works Association, Denver.
  3. Lee, D. G., S. J. Park, and S. J. Kim. 2007. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. J. Microbiol. Biotechnol. 17: 1558-1562.
  4. Payment, P. 1999. Heterotrophic bacteria. In American Water Works Association (eds.). Manual of Water Supply Practices, Waterborne Pathogens. American Water Works Association, Denver.
  5. Prevost, M., A. Rompre, H. Baribeau, J. Coallier, and P. Lafrance. 1997. Service lines: Their effect on microbiological quality. J. Am. Water Works Assoc. 89: 78-91.
  6. Reasoner, D. J. and E. E. Geldreich. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49: 1-7.
  7. Rickard, A. H., S. A. Leach, L. S. Hall, C. M. Buswell, N. J. High, and P. S. Handley. 2002. Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl. Environ. Microbiol. 68: 3644-3650. https://doi.org/10.1128/AEM.68.7.3644-3650.2002
  8. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  9. WHO. 1996. Guidelines for Drinking-Water Quality: Health Criteria and Other Supporting Information, pp. 105-110. World Health Organization, Geneva.

Cited by

  1. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine vol.210, pp.None, 2022, https://doi.org/10.1016/j.watres.2021.117975