Pretreatment of Waste-activated Sludge for Enhancement of Methane Production

메탄발효 효율향상을 위한 하.폐수 슬러지의 전처리 기술

  • Received : 2010.10.06
  • Accepted : 2010.11.23
  • Published : 2010.12.28

Abstract

Although different disposal routes of waste-activated sludge are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into methane. The potential of using methane as energy source has long been widely recognised and the present paper extensively reviews the principles of anaerobic digestion, the process parameters and hydrolysis. Hydrolysis is recognised as rate-limiting step in the complex digestion process. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilizing intracellular material into the water phase and transforming refractory organic material into biodegradable species. The reader will finally be guided to extensive discussion for anaerobic digestion processes.

다양한 하 폐수 처리공정 중 혐기성 소화공정은 이산화탄소 배출을 감소시키고 생성되는 메탄을 에너지로서 사용할 수 있는 장점을 가지고 있다. 본 논문에서는 이러한 혐기성 소화공정의 문제점과 보완점에 대해 살펴보았다. 가수분해과정은 혐기성 소화과정 중 율속단계에 해당하여 소화공정과정을 촉진시키고 바이오가스의 생산을 증가시키기 위하여 다양한 전처리 방법이 개발되어왔다. 현재 혐기성 소화공정을 위한 전처리 방법 중 열처리 방법, 초음파 처리, 기계적 처리방법, 화학적 처리방법 등이 상업적으로 이용되고 있으며, 이들 공정은 슬러지 플록 또는 세포의 파괴를 통해 세포분획물이 생물학적으로 분해될 수 있는 형태로 전환시키는 것을 목적으로 한다. 이러한 과정들 모두는 특정 상황에 따른 장점과 단점을 모두 지니고 있으므로 각 공정과정에 대한 이해와 이를 통한 적용을 통해 특정 슬러지에 적합한 최적의 전처리 공정을 도출해 낼 필요가 있다. 또한 혐기성 소화공정의 효율증대와 경제성 확대를 위한 혐기성 소화공정 개발이 필요하다고 할 수 있다.

Keywords

References

  1. Appels, L., J. Baeyens, J. Degrve, and R. Dewil. 2008. Priciples and potential of the anaerobic digestion of wasteactivated sludge. Prog. Energy Combust. Sci. 34: 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
  2. Baier, U. and P. Schmidheiny. 1997. Enhances anaerobic degradation of mechanically disintegrated sludge. Water Sci. Technol. 37: 137-143.
  3. Barlindhaug, J. and H. $\phi$ degaard. 1996. Thermal hydrolysate as a carbon source for denitrification. Water Sci. Technol. 33: 99-108.
  4. Battimelli, A., C. Millet, J. P. Delgenes, and R. Moletta. 2003. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci. Technol. 48: 61-68.
  5. Boe K. 2006. Online monitoring and control of the biogas process. Ph.D. Thesis, Institute of Environment & Resources, Technical University of Denmark.
  6. Bougrier, C., J. P. Degenes, and H. Carrere. 2007. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 34: 20-27. https://doi.org/10.1016/j.bej.2006.11.013
  7. Choi, H. B., K. Y. Hwang, and E. B. Shin. 1997. Effects on anaerobic digestion of waste activated sludge pre-treatment. Water Sci. Technol. 35: 207-211.
  8. Climent, M., I. Ferrer, M. D. Baeza, A. Artola, F. Vazquez, and X. Font. 2007. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 133: 335-342. https://doi.org/10.1016/j.cej.2007.02.020
  9. Gavala, H., U. Yenal, I. Skiadas, P. Westermann, and B. Ahring. 2003. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pretreatment at elevated temperature. Water Res. 37: 4561-4572. https://doi.org/10.1016/S0043-1354(03)00401-9
  10. Goel, R, T. Tokutomi, and H. Yasui. 2003. Anaerobic digestion of excess activated sludge with ozone pre-treatment. Water Sci. Technol. 47: 207-214.
  11. Hiraoka, M., N. Takeda, S. Sakai, and A. Yasuda. 1989. Highly efficient anaerobic digestion with thermal pre-treatment. Water Sci. Technol. 17: 54.
  12. Hur, N. H. 2008. Production of biogas and its application in developed countries. Fishing and agrarian villages and environment. 99: 64-78.
  13. Hwang, M. H., N. J. Jang, S. H. Hyum, and I. S. Kim. 2004. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J. Biotechnol. 111: 297-309. https://doi.org/10.1016/j.jbiotec.2004.04.024
  14. Kampas, P., S. A. Parsons, P. Pearceb, S. Ledouxb, P. Valec, J. Churchleyc, and E. Cartmella. 2007. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Res. 41: 1734-1742. https://doi.org/10.1016/j.watres.2006.12.044
  15. Kelleher, B. P., J. J. Leahy, A. M. Henihan, T. F. O'Dwyer, D. Sutton, and M. J. Leahy. 2000. Advances in poultry litter disposal technology - a review. Bioresour. Technol. 83: 27-36.
  16. Kim, J., C. Park , T-.H. Kim, M. Lee, S. Kim, S-.W. Kim, and J. Lee. 2003. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95: 271-275.
  17. Knezevic, Z., D. S. Mavinic, and B.C. Anderson. 1995. Pilot scale evaluation of anaerobic codigestion of primary and pretreated waste activated sludge. Water Environ. Res. 67: 835-841. https://doi.org/10.2175/106143095X131763
  18. Li, Y. Y. and T. Noike. 1992. Upgrading of anaerobic digestion of waste activated sludge by thermal pre-treatment. Water Sci. Technol. 3-4: 857-866.
  19. Machnicka, A., J. Suschka, and K. Grbel. 2005. The Intensification of Sewage Sludge Anaerobic Digestion by Partial Disintegration of Surplus Activated Sludge and Foam w: Integration and Optimization of Sanitation Systems In Urban Areas: proceedings of Polish-Swedish seminars, Cracow, March 17-18, 2005, 13: s.87-94.
  20. Malina, J. F. and F. D. Pohland. 1992. Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes. Technomic Publishing Co. Inc., 7: 3-33.
  21. Ministry of Environment in Korea. 2009. "2008 Production and treatment of waste in Korea".
  22. Neis, U., A. Tiehm, and K. Nickel. 2000. Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Sci. Technol. 42: 73-80.
  23. Pinnekamp, J. 1989. Effects of thermal pre-treatment of sewage sludge on anaerobic digestion. Water Sci. Technol. 21: 97-108.
  24. Qasim, S. R. 1999. Wastewater Treatment Plants: Planning. Design and operation. 2nd ed. Boca Raton: CRC Press.
  25. Rehm, H. J., G. Reed, A. Phler, and P. J. W. Stadler. 2000. Biotechnology, vol. 11A: Environmental processes I, 2nd ed. New York: Wiley.
  26. Rivard, C. J. and N. J. Nagle. 1996. Pre-treatment technology for the beneficial reuse of municipal sewage sludges. Appl. Bioch. Biotechnol. 57-58: 983-991. https://doi.org/10.1007/BF02941778
  27. Shimizu, T., K. Kudo, and Y. Nasu. 1993. Anaerobic wasteactivated sludge digestion - a bioconversion mechanism and kinetic model. Biotechnol. Bioeng. 41: 1082-1091. https://doi.org/10.1002/bit.260411111
  28. Tanaka, S., T. Kobayashi, K. Kamiyama, and M. L. S. Bildan. 1997. Effects of thermochemical pre-treatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 8: 209-215.
  29. Tanaka, S. and K. Kamiyama. 2002. Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Sci. Technol. 46: 173-179.
  30. Tiehm, A, K. Nickel, M. Zellhorn, and U. Neis. 2001. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 35: 2003-2009. https://doi.org/10.1016/S0043-1354(00)00468-1
  31. Turovskiy, I. S. and P. K. Mathai. 2006. Wastewater sludge processing. New York: Wiley.
  32. Valo, A., H. Carrere, and J. Delgene. 2004. Thermal, chemical and thermo-chemical pretreatment of waste activated sludge for anaerobic digestion. J. Chem. Technol. Biotechnol. 79: 1197-203. https://doi.org/10.1002/jctb.1106
  33. Varel, V. H., H. R. Isaacson, and M. P. Bryant. 1977. Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33: 298-307.
  34. Wang, Q., M. Kuninobu, K. Kamimoto, H. I. Ogawa, and Y. Kato. 1999. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pre-treatment. Bioresource Technol. 68: 309-313. https://doi.org/10.1016/S0960-8524(98)00155-2
  35. Weemaes, M. P. J. and W. Verstraete. 1998. Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 73: 83-92. https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2<83::AID-JCTB932>3.0.CO;2-2
  36. Weemaes, M., H. Grootaerd, F. Simoens, and W. Verstraete. 2000. Anaerobic digestion of ozonized biosolids. Water Res. 34: 2330-2336. https://doi.org/10.1016/S0043-1354(99)00373-5
  37. Zheng, J., R. A. Graff, J. Fillos, and I. Rinard. 1998. Incorporation of rapid thermal conditioning into a wastewater treatment plant. Fuel Process Technol. 56: 183-200. https://doi.org/10.1016/S0378-3820(98)00055-1