Isolation and Characterization of a Diesel-Degrading Bacterium, Gordonia sp. SD8

디젤 분해 세균 Gordonia sp. SD8 분리 및 특성

  • Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Ji-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 홍선화 (이화여자대학교 환경공학과) ;
  • 김지영 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2010.06.26
  • Accepted : 2010.08.30
  • Published : 2010.09.28

Abstract

A diesel-degrading bacterium, Gordonia sp. SD8, was isolated from soil contaminated with petroleum, and its diesel degradation was characterized in a soil as well as a liquid culture system. SD8 could grow in the mineral salt medium supplemented with diesel as a sole carbon and energy source. The maximum specific growth rate ($0.67{\pm}0.05\;d^{-1}$) and diesel degradation rate ($1,727{\pm}145$ mg-TPH $L^{-1}\;d^{-1}$) of SD8 showed at 20,000 mg-TPH $L^{-1}$ and $30^{\circ}C$, and then this bacterium could degrade high strength of diesel of 40,000 mg-TPH $L^{-1}$. The residual diesel concentration in the inoculated soil with SD8 was 3,724 mg-TPH kg-dry $soil^{-1}$ after 17 days, whereas the diesel concentration in the non-inoculated soil was $8,150{\pm}755$ mg-TPH kg-dry $soil^{-1}$. These results indicate that Gordonia sp. SD8 can serve as a promising microbial resource for the bioremediaion of contaminated soil with petroleum hydrocarbons including diesel.

본 연구에서는 디젤로 오염된 토양에서 디젤 분해능이 우수한 Gordonia sp. SD8을 분리하였고, 이 균주의 디젤 분해특성을 액상과 토양에서 조사하였다. SD8은 유일 에너지원과 탄소원으로 디젤을 이용하여 생장 가능하였다. SD8 균주의 성장과 디젤 분해속도에 미치는 디젤 농도 영향을 조사한 결과, 20,000 mg-TPH $L^{-1}$농도에서 최대 비성장속도($0.67{\pm}0.05\;d^{-1}$)와 최대분해속도($1,727{\pm}145$ mg-TPH $L^{-1}\;d^{-1}$)를 얻을 수 있었다. 또한, 이 균주는 40,000 mg-TPH $L^{-1}$의 고농도 디젤을 분해할 수 있었으며, $30^{\circ}C$에서 비성장속도와 디젤분해속도가 가장 빨랐다. 디젤로 오염된 토양 정화에 미치는 Gordonia sp. SD8 접종 효과를 조사한 결과, 17일 경과 후, SD8을 접종하지 않은 대조군 토양의 디젤 잔류 농도는 $8,150{\pm}755$ mg-TPH kg-dry $soil^{-1}$이었으나, SD8을 접종한 경우에는 3,724 mg-TPH kg-dry $soil^{-1}$이었다. 이러한 결과는 Gordonia sp. SD8는 향후 디젤 등을 포함한 석유계 탄화수소화합물로 오염된 토양을 정화하는데 활용 가능한 유용 미생물 자원임을 의미한다.

Keywords

References

  1. Arenskotter, M., D. Broker, and A. Steinbuchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004
  2. Ashok, B. T., S. Saxena, and J. Mussarat. 1995. Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett. Appl. Microbiol. 21: 246-248. https://doi.org/10.1111/j.1472-765X.1995.tb01052.x
  3. Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96: 1049-1055. https://doi.org/10.1016/j.biortech.2004.09.008
  4. Dean-Ross, D., J. Moody, and C. E. Cerniglia. 2002. Utilisation of mixtures of Polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol. Ecol. 41: 1-7. https://doi.org/10.1111/j.1574-6941.2002.tb00960.x
  5. Franzetti, A., G. Bestetti, P. Caredda, P. La-Colla, and E. Tamburini. 2008. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol. Ecol. 63: 238-248. https://doi.org/10.1111/j.1574-6941.2007.00406.x
  6. Franzetti, A., P. Caredda, C. Ruggeri, P. La-Colla, E. Tamburini, M. Papacchini, and G. Bestetti. 2009. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75: 801-807. https://doi.org/10.1016/j.chemosphere.2008.12.052
  7. Haritash A. K. and C. P. Kaushik. 2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 169: 1-15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137
  8. Hong, J. H., J. S. Kim, O. K. Choi, K. S. Cho, and H. W. Ryu. 2004. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J. Microb. Biot. 21: 381-384, 2004.
  9. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons(TPHs) from soils. Microchem. J. 91: 139-147, 2005.
  10. Koo, S. Y. and K. S. Cho. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechn.19: 1431-1438.
  11. Lee, E. H. and K. S. Cho. 2009a. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J. Hazard. Mater. 167: 669-674. https://doi.org/10.1016/j.jhazmat.2009.01.035
  12. Lee, E. H., J. Kim, K. S. Cho, Y. G. Ahn, and G. S. Hwang. 2009b. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ. Sci. Pollut. Res. 17: 64-77.
  13. Lee, J. J., S. K. Rhee, and S. T. 2001. Degradation of 3- Methylpyridine and 3-Ethylpyridine by Gordonia nitida LE31. Appl. Environ. Microbiol.67: 4342-4345. https://doi.org/10.1128/AEM.67.9.4342-4345.2001
  14. Liu, L., X. W. Li, S. J. Liu, and Z. P. 2007. Isolation and identification of a PAHs-degrading strain Gordonia sp. He4 and its dynamics during bioremediation of phenanthrene polluted soil. Huan. Jing. Ke. Xue. 28: 617-22.
  15. Macek, T. M. and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation(research review paper). Biotechnol. Adv. 18: 23-34. https://doi.org/10.1016/S0734-9750(99)00034-8
  16. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092. https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  17. Margesin, R. and F. Schinner. 2001. Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area. Appl. Environ. Microbiol. 67: 3127-3133. https://doi.org/10.1128/AEM.67.7.3127-3133.2001
  18. Marques, A. V., S. C. Cunha des Santos, R. D. C. Casella, R. L. Vital, C. V. Sebastin, and L. Seldin. 2008. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. J. Microbiol. Biotechn. 18: 1966-1974.
  19. Medina-Bellver, J. I., P. Marin, A. Delgado, A. Rodriguez- Sanches, E. Reyes, J. L. Ramos, and S. Marques. 2005. Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ. Microbiol. 7: 773-779. https://doi.org/10.1111/j.1462-2920.2005.00742.x
  20. Philp, J. C., S. M. Bamforth, I. Singleton, and R. M. Atlas. 2005. Environmental pollution and restoration: A role for bioremediation, In R. M. Atlas, and J. Philp (eds.). Bioremediation. ASM Press, Washington, DC. U.S.A. pp. 1-48.
  21. Prince, R. C. and M J. Grossman. 2003. Substrate Preferences in Biodesulfurization of Diesel Range Fuels by Rhodococcus sp. Strain ECRD-1. Appl. Environ. Microbiol. 69: 5833-5838. https://doi.org/10.1128/AEM.69.10.5833-5838.2003
  22. Rehmann, K., H. P. Noll, C. E. W. Steiberg, and A. A. Kettrup. 1998. Pyrene degradation by Mycobacterium sp. Strain KR2. Chemosphere 36: 2977-2992. https://doi.org/10.1016/S0045-6535(97)10240-5
  23. Reichenauer, T. G. and J. J. Germida. 2008. Phytoremediation of Organic Contaminants in Soil and Groundwater. Chem. Sus. 1: 708-717.
  24. Romero, M. C., M. C. Cazau, S. Giorgieri, and A. M. Arambarri. 1998. Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ. Pollut. 101: 355-359. https://doi.org/10.1016/S0269-7491(98)00056-6
  25. Tam, N. F. Y., C. L. Guo, W. Y. Yau, and Y. S. Wong. 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong-Kong. Mar. Poll. Bull. 42: 316-324.
  26. Torsvik, V., L. Ovreas, and T. F. Thingstad. 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296: 1064-1066. https://doi.org/10.1126/science.1071698
  27. Valeria, P. A., R. B. Vieira, F. P. Franca, and V. L. Cardoso. 2007. Biodegradation of effluent contaminated with diesel fuel and gasoline. J. Hazard. Mater. 140: 52-59. https://doi.org/10.1016/j.jhazmat.2006.06.048
  28. Van Hamme, J. D. and O. P. Ward. 2003. Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol.67: 4874-4879.
  29. Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 12: 237-241. https://doi.org/10.1016/S0958-1669(00)00205-6
  30. Wei, Q. F., R. R. Mather, and A. F. Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96: 331-334. https://doi.org/10.1016/j.biortech.2004.04.005
  31. Yuan, S. Y., L. C. Shiung, and B. V. Chang. 2002. Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull. Environ. Contam. Toxicol. 69: 66-73. https://doi.org/10.1007/s00128-002-0011-z