References
- Y. D. Chung, I. Muta, T. Hoshino, and T. Nakamura, "Characteristics of a Persistent Current Compensator for Superconducting NMR Magnets Using Linear Type Magnetic Flux Pump," IEEE Trans. Applied Superconductivity, Vol. 15, No. 2, pp. 1338-1341, 2006.
- Y. D. Chung, T. Hoshino, and T. Nakamura, "Current Pumping Performance of Linear-Type Magnetic Flux Pump With Use of Feedback Control Circuit System," IEEE Trans. Applied Superconductivity, Vol. 16, No. 2, pp. 1638-1641, 2006.
- W. Pedrycz and A. T. Vasilakos, "Computational Intelligence in Telecommunications Networks," CRC Press, 2000.
- D. Srinivasan, C. W. Chan, and P. G. Balaji, "Computational intelligence-based congestion prediction for a dynamic urban street network," Neurocomputing, Vol. 72 pp. 2710-2716, 2009. https://doi.org/10.1016/j.neucom.2009.01.005
- G. A. Montazer, R. Sabzevari, H. G. Khatir, "Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system," Neurocomputing, Vol. 71, pp. 167-173, 2007. https://doi.org/10.1016/j.neucom.2007.08.002
- J. S. Lee, R. Sankar, "Theoretical derivation of minimum mean square error of RBF based equalizer," Signal Processing, Vol. 87, pp. 1613-1625, 2007. https://doi.org/10.1016/j.sigpro.2007.01.008
- K. B. Kim and S. S. Kim, "A passport recognition and face verification using enhanced fuzzy ART based RBF network and PCA algorithm," Neurocomputing, Vol. 71, pp. 3202-3210, 2008. https://doi.org/10.1016/j.neucom.2008.04.045
- J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
- I. Myrtveit, E. Stensrud, and M. Shepperd, "Reliability and validity in comparative studies of software prediction models," IEEE Trans. on Software Engineering, Vol. 31, No. 5, pp. 380-391, 2005. https://doi.org/10.1109/TSE.2005.58
- I. Witten and E. Frank, Data mining: Practical machine learning tools and techniques (2nd ed.), Morgan Kaufmann, San Francisco (2005).
- M. Shin and A. Goel, "Empirical data modeling in software engineering using radial basis functions," IEEE Trans. Software Engineering, Vol. 26, No. 6, pp. 567-576, 2000. https://doi.org/10.1109/32.852743
- A. Oliveira, "Estimation of software project effort with support vector regression," Neurocomputing, Vol. 69, pp. 1749-1753, 2006. https://doi.org/10.1016/j.neucom.2005.12.119
- P. Singla, K. Subbarao, and J. L. Junkins, "Direction-dependent learning approach for radial basis function networks," IEEE Trans. Neural Networks, Vol. 18, No. 1, pp. 203-222, 2007. https://doi.org/10.1109/TNN.2006.881805
- A. Alexandridis, H. Sarimveis, and G. Bafas, "A new algorithm for online structure and parameter adaptation of RBF networks," Neural Networks, Vol. 16, pp. 1003-1017, 2003. https://doi.org/10.1016/S0893-6080(03)00052-2
- X. Hong, "A fast identification algorithm for Box– Cox transformation based radial basis function neural network," IEEE Trans. Neural Networks, Vol. 17, No.4, pp. 1064-1069, 2006. https://doi.org/10.1109/TNN.2006.875986
- C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
- http://www.mathworks.com/access/helpdesk/help/toolbox/nnet.