Removals of Formaldehyde by Silver Nano Particles Attached on the Surface of Activated Carbon

나노 은입자가 첨착된 활성탄의 포름알데히드 제거특성

  • Shin, Seung-Kyu (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kang, Jeong-Hee (Department of Civil & Environmental Engineering, Sejong University) ;
  • Song, Ji-Hyeon (Department of Civil & Environmental Engineering, Sejong University)
  • 신승규 (세종대학교 토목환경공학과) ;
  • 강정희 (세종대학교 토목환경공학과) ;
  • 송지현 (세종대학교 토목환경공학과)
  • Received : 2010.09.18
  • Accepted : 2010.10.22
  • Published : 2010.10.31

Abstract

This study was conducted to investigate formaldehyde removals by silver nano-particles attached on the surface of granular activated carbon (Ag-AC) and to compare the results to those obtained with ordinary activated carbon (AC). The BET analysis showed that the overall surface area and the fraction of micropores (less than $20{\AA}$ diameter) of the Ag-AC were significantly decreased because the silver particles blocked the small pores on the surface of the Ag-AC. The formaldehyde removal capacity of the Ag-AC determined using the Freundlich isotherm was higher than that of AC. Despite the decreased BET surface area and micropore volume, the Ag-AC had the increased removal capacity for formaldehyde, presumably due to catalytic oxidation by silver nano-particles. In contrast, the adsorption intensity of the Ag-AC, estimated by 1/n in the Freundlich isotherm equation, was similar to that of the ordinary AC, indicating that the surface modification using silver nano-particles did not affect the adsorption characteristics of AC. In a column experiment, the Ag-AC also showed a longer breakthrough time than that of the AC. Simulation results using the homogeneous surface diffusion model (HSDM) were well fitted to the breakthrough curve of formaldehyde for the ordinary AC, but the predictions showed substantial deviations from the experimental data for the Ag-AC. The discrepancy was due to the catalytic oxidation of silver nano-particles that was not incorporated in the HSDM. Consequently, a new numerical model that takes the catalytic oxidation into accounts needs to be developed to predict the combined oxidation and adsorption process more accurately.

본 연구에서는 나노 사이즈의 은입자가 첨착된 입상활성탄을 적용하여 기체상 포름알데히드의 흡착특성을 확인하고 실험결과를 수치해석 결과와 비교 평가하였다. 나노 은입자 첨착활성탄에 대해 BET분석 결과, 나노 은입자가 활성탄 표면의 미세기공을 막아 활성탄의 비표면적이 다소 감소하였으며, 특히 $20{\AA}$ 이하 micropore의 총 부피가 크게 감소한 것을 확인하였다. 포름알데히드에 대한 등온흡착실험 결과, 최대 겉보기 흡착능은 나노 은입자 첨착활성탄의 값이 일반활성탄에 비해 높았다. BET 표면적이나 미세기공의 감소에도 불구하고 나노 은입자 첨착활성탄이 향상된 포름알데히드 제거능을 나타낸 것은 은입자 첨착활성탄에서 흡착 외에 추가적인 포름알데히드의 촉매산화가 이루어지고 있기 때문으로 판단된다. 흡착강도를 의미하는 1/n은 두 가지 활성탄에 대해 모두 비슷한 기울기를 보여 활성탄의 표면 개질에 의해 활성탄 고유의 물리 화학적 흡착 성능은 영향을 받지 않은 것으로 판단된다. 연속유입 실험 결과에서도 나노 은입자 첨착활성탄이 일반활성탄보다 높은 포름알데히드 제거능을 나타내어 포름알데히드 산화효과를 확인하였다. 활성탄의 연속유입 실험결과를 수치해석 결과와 비교했을 때 나노 은입자 첨착활성탄에 대해서는 나노 은입자에 의한 산화효과를 반영하지 않고 있지 않아 실험결과와 거의 일치하지 않았다. 따라서 금속물질로 표면 개질된 활성탄 컬럼 설계에 수치해석 모델을 활용하고자 한다면 흡착뿐만이 아니라 촉매산화 효과가 반영된 새로운 수치모델의 개발이 필요할 것으로 판단된다.

Keywords

References

  1. Kim, S. S., Kang, D. H., Choi, D. H., Yeo, M. S. and Kim, K. W., "Comparison of strategies to improve indoor air quality at the pre-occupancy stage in new apartment buildings," Building Environ., 43(3), 320-328(2008). https://doi.org/10.1016/j.buildenv.2006.03.026
  2. Jeffrey, P. O. and Lim, S. F., "Airborne Concentrations of bacteria in a hospital environment in singapore," Water Air Soil Pollution, 144(1/4), 333-341(2003). https://doi.org/10.1023/A:1022973402453
  3. Thron, A., "Sick building syndrome: a diagnostic dilemma," Soc. Sci. Med., 47(9), 1307-1312(1998). https://doi.org/10.1016/S0277-9536(98)00206-8
  4. Lee, S. C., Guo, Hai., Li, W. and Chan, L "Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong," Atmos. Environ., 36, 1929-1940 (2002). https://doi.org/10.1016/S1352-2310(02)00176-0
  5. Lim, J. K., Lee, S. W., Kam, S. K., Lee, D. W. and Lee, M. G., "Adsorption characteristic of toluene vapor in fixedbed activated carbon," J. Environ. Sci., 14(1) 61-69(2005). https://doi.org/10.5322/JES.2005.14.1.061
  6. 최원준, 정종현, "$Na_2CO_3$, $K_2CO_3$$Li_2CO_3$ 첨착활성탄을 이용한 $CO_2$제거," 한국환경보건학회지, 34(3), 240-246 (2008).
  7. 임진관, 이송우, 감상규, 이동환, 이민규 "고정층 활성탄 흡착반응기에서 기상 톨루엔의 흡착특성," 한국환경과학회지, 14(1), 61-69(2005).
  8. 김한수, 박영성, 민병무 "고정 흡착층에서 벤젠의 흡착 특성," 대한환경공학회지, 23(12), 1979-1988(2001).
  9. Lee, S. W., Bae, S. K., Kwon, J. H., Na, Y. S., An, C. D., Yoon, Y. S. and Song, S. K., "Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor," J. Korean Soc. Environ. Eng., 27(6), 620-625(2005).
  10. Lee, S. W., Kwon, J. H., Kang, J. H., Na, Y. S., An, C. D., Yoon, Y. S. and Song, S. K., "adsorption characteristics of toluene vapor according to pore size distribution of activated carbon," J. Environ. Sci., 15(7), 695-699(2005).
  11. Gosheger, G., Hardes, J., Ahrens, H., Streitburger, A., Buerger, H., Erren, M., Gunsel, A., Kemper, F. H., Winkelmann, W., and Von Eiff, C., "Silver-coated megaendoprostheses in a rabbit model - an analysis of the infection rate and toxicological side effects," Biomaterials, 25(24), 5547-5556 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.008
  12. Imamura, S., Imakubo, K., Furuyoshi, S. and Jindai, H., "Decomposition of dichlorodifluoromethane on boron phosphate ($BPO_4$) catalyst," Ind. Eng. Chem. Res., 30(10), 2355-2358(1991). https://doi.org/10.1021/ie00058a018