제강전로슬래그를 정석재로 이용한 Struvite 정석반응에 의한 질소와 인의 제거특성

Removal Characteristics of Nitrogen and Phosphorus by Struvite Crystallization using Converter Slag as a Seed Crystal

  • 임수빈 (경성대학교 환경공학과)
  • Yim, Soo-Bin (Department of Environmental Engineering, Kyungsung University)
  • 투고 : 2010.05.25
  • 심사 : 2010.09.30
  • 발행 : 2010.09.30

초록

제철소에서 산업부산물로 다량 발생되는 제강전로슬래그를 struvite 정석반응의 정석재로 사용하여 고농도의 질소와 인의 제거특성을 파악하고자 하였다. $NH_4$-N와 $PO_4$-P의 제거 및 회수를 위한 struvite 정석반응의 최적의 pH영역은 8.0~8.75 범위로 확인되었다. pH 8.0~8.75 영역에서 struvite 침전 및 정석반응에 의한 총제거효율은 $NH_4$-N와 $PO_4$-P에 대하여 각각 34.3~61.0%와 91.0~96.2%의 값을 나타냈다. Struvite 정석반응에 의한 $NH_4$-N의 제거는 pH 8.5에서 29.4%의 최대값을 보였고 $PO_4$-P의 경우 pH 8.0에서 65.1%로 최대값을 나타냈다. 수중의 Ca 이온농도가 증가할수록 struvite 정석반응에 의한 $NH_4$-N의 제거효율은 감소하는 경향을 나타냈으며 $PO_4$-P의 경우에는 Ca 이온농도의 변화에 총제거효율이 크게 변하지 않았다. SEM, EDS 및 XRD 분석결과 struvite 정석반응에서 $NH_4$-N과 $PO_4$-P의 제거는 MAP과 HAp 결정이 독립적으로 혹은 정석재의 표면상에 발생함으로써 진행되는 것으로 판단되었다.

This study investigated the removal characteristics of highly concentrated $NH_4$-N and $PO_4$-P by struvite crystallization using converter slag as a seed crystal. The optimal pH range for removal and recovery of $NH_4$-N and $PO_4$-P by struvite crystallization was measured to be 8.0~8.75, in which total removal efficiencies for $NH_4$-N and $PO_4$-P by struvite precipitation and crystallization were 34.3~61.0% and 91.0~96.2%, respectively. The maximum removal efficiencies for $NH_4$-N and $PO_4$-P by struvite crystallization were 29.4% at pH 8.5 and 65.1% at pH 8.0, respectively. The removal efficiency of $NH_4$-N by struvite crystallization decreased with increasing calcium ion concentration. The analysis results of SEM, EDS and XRD exhibited that $NH_4$-N and $PO_4$-P in meta-stable region of struvite crystallization could be eliminated through formation of magnesium ammonia phosphate (MAP) and hydroxyapatite (HAp) on seed crystals by struvite precipitation and crystallization.

키워드

참고문헌

  1. Morse, G.K., Brett, J.A., Lester, J.N., "Review : Phosphorus removal and recovery technologies," Sci. Total Environ., 212, 69-81(1998). https://doi.org/10.1016/S0048-9697(97)00332-X
  2. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., Parsons, S. A., "Phosphorus recovery from wastewater by struvite crystallization: A review," Environ. Sci. Technol. 39, 433-477 (2009). https://doi.org/10.1080/10643380701640573
  3. 원성연, 박승국, 이상일, "Struvite 결정화에 의한 질소 및 인의 제거," 대한환경공학회지, 22(4), 599-607(2000).
  4. Bouropoulos, N. C. Koutsoukos, P. G., "Spontaneous precipitation of struvite from aqueous solutions," J. Crystal Growth, 213, 381-388(2000). https://doi.org/10.1016/S0022-0248(00)00351-1
  5. Doyle, J. D., Parsons S. A., "Struvite formation, control and recovery," Water Res., 36, 3925-3940(2002). https://doi.org/10.1016/S0043-1354(02)00126-4
  6. Suzuki, K., Tanaka, Y., Kuroda, K., Hanajima, D., Fukumoto, Y., Yasuda, T., Waki, M., "Removal and recovery of phosphate from swine wastewater by demonstration crystallization reactor and struvite accumulation device," Biores. Technol., 98, 1573-1578(2007).
  7. Battistoni P., Pavan P., Cecchi F. and Mata Alvarez J., "Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants," Water Res., 34, 3033-3041(2000). https://doi.org/10.1016/S0043-1354(00)00045-2
  8. Ali, M. I., Schneider, P. A., "Crystallization of struvite from metastable region with different types of seed crystal," J. Non-Equilib. Thermodyn., 30, 95-113(2005). https://doi.org/10.1515/JNETDY.2005.007
  9. Wang, J., Burken, J. G. and Zhang, X. Q., "Effect of seeding materials and mixing strength on struvite precipitation," Water Environ. Res., 78, 125-132(2006). https://doi.org/10.2175/106143005X89580
  10. Ali, M. I, Schnedier, P. A., "A fed-batch design approach of struvite system in controlled supersaturation," Chem. Eng. Sci., 61, 3951-3961(2006). https://doi.org/10.1016/j.ces.2006.01.028
  11. Ali, M. I., "Struvite crystallization in fed-batch pilot scale and description of solution chemistry of struvite," WTrans IChemE, Part A, Chem. Eng. Res. Design., 85, 344-356 (2007).
  12. Mullin, J. W. Crystallization, 3rd edition, Butterworth-Heinnemann, Ipswich, UK(1993).
  13. Kim, D., Ryu, H. D., Kim, M. S., Kim, J., Lee, S. I., "Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate," J. Hazard. Mater., 146, 81-85(2007). https://doi.org/10.1016/j.jhazmat.2006.11.054
  14. Stratful I., Brett S., Scrimshaw M. B. and Lester J. N., "Biological phosphorus removal. its role in phosphorus recycling," Environ. Technol., 20, 681-696(1990).
  15. Perez Rodriguez J. L., Maqueda C., Lebrato J., Carretero M. I., "Influence of clay minerals, used as supports in anaerobic digesters, in the precipitation of struvite," Water Res., 26, 497-506(1992). https://doi.org/10.1016/0043-1354(92)90051-5
  16. Kim, E. H., Hwang, H. K. and Yim, S. B., "Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag," J. Environ. Sci. & Health Part A, 41, 2531-2545(2006). https://doi.org/10.1080/10934520600927740
  17. Yamada, H., Kayama M, Saito, K., Hara, M., "A fundamental reaserch on phosphorus removal by using slag," Water Res., 20, 547-557(1980).
  18. 임수빈, "고농도 질소와 인 제거를 위한 Struvite 정석반응의 정석재로서 산업부산물의 이용 가능성," 한국물환경학회지, 26(4), 664-672(2010).
  19. Kim, D., Kim, J, Ryu, H. D., Lee, S. I., "Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater," Bioresour. Technol., 100, 74-78(2009). https://doi.org/10.1016/j.biortech.2008.05.024
  20. Kim, E. H., Hwang, H. W., Yim S. B., "Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag," J. Environ. Sci. & Health, 41, 2531-2545 (2006a). https://doi.org/10.1080/10934520600927740
  21. Kim, E. H., Yim, S. B., Jung, H. C. and Lee, E. J., "Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material," J. Hazard. Mater., 136, 690-697(2006b). https://doi.org/10.1016/j.jhazmat.2005.12.051
  22. Ohlinger, K. N., Young, T. M. and Schroeder, E. D., "Predicting struvite formation in digestion," Water Res., 14, 1695-1703(1998).
  23. Booker, N. A., Priestley A. J. and Fraser I. H., "Struvite formation in wastewater treatment plants: opportunities for nutrient recovery," Environ. Technol., 20, 777-782(1999) https://doi.org/10.1080/09593332008616874
  24. Seckler, M. M., Bruinsma, O. S. L. and Van Rosmalen, G. M., "Phosphate removal in a fluidized bed-I. Identification of physical process," Water Res., 30, 1585-1588(1996). https://doi.org/10.1016/0043-1354(96)00018-8