Estimating BOD, CDO and TOC Hydrologic Flux in Nakdong River Basin

낙동강 유역 BOD, COD 및 TOC의 수문학적 플럭스 추정

  • Lee, A-Yeon (Department of Environmental Engineering, Pukyong National University) ;
  • Park, Moo-Jong (Department of Civil Engineering, Hanseo University) ;
  • Jo, Deok-Jun (Division of Architecture & Civil Engineering, Dongseo University) ;
  • Kim, Sang-Dan (Department of Environmental Engineering, Pukyong National University)
  • Received : 2010.03.28
  • Accepted : 2010.08.31
  • Published : 2010.09.30

Abstract

This study presents a constituent load estimating procedure that can be operated with the present Korean TMDL monitoring system. The modified TANK model is used as a daily river flow simulation model whose parameters are estimated from 8-day intervals flow data. Constituent loads are estimated with the 7-parameter log linear model whose parameters are estimated by the minimum variance unbiased estimator. Results from Nakdong river basin reveals that the proposed procedure provides satisfactory TOC and BOD load estimates. As an application, a representative load duration curve is derived for working out a way to represent the overall hydrologic flux of BOD, COD and TOC at Nakdong river basin. The present water quality can be checked stochastically by Load Duration Curve through this study and presented visually.

본 연구에서는 현재 시행되고 있는 오염총량관리제 모니터링 시스템에 적용가능한 부하량 추정기법에 대하여 제시하였다. 수정 TANK 모형을 통하여 8일 간격 유량자료의 1일 간격 유량자료로의 확장을 시행하여 유황곡선의 작성을 가능하게 하였다. 7변수 대수 선형 모형 적용 통한 BOD, COD 및 TOC 부하량 추정에서 만족스러운 결과를 확인할 수 있었다. 연구의 적용의 일환으로, 낙동강유역의 BOD, COD 및 TOC 항목의 부하량 유황 곡선을 작성하여 전체적인 분포를 살펴보았다. 본 연구를 통하여 파악된 부하량 유황곡선은 해당 지점의 현재 전체적인 수질현황을 확률적으로 파악할 수 있음과 동시에 이를 시각적으로 도시할 수 있는 장점을 가지고 있다.

Keywords

References

  1. Chon, T. A., "Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers," U.S. Natl. Rep. Int. Union Geod, Geophys. 1991-1994, Rev. Geophys., 33, 1117-1124(1995). https://doi.org/10.1029/95RG00292
  2. Government Accountability Office, Water quality: Improved EPA guidance and support can help states develop standards that better target cleanup efforts, Tech. Rep. GAO-03-308, Washington, D.C.(2003).
  3. National Research Council, Assessing the TMDL Approach to Water Quality Management, 109 pp., Natl. Acad. Press, Washington, D.C.(2001).
  4. Chon, T. A., "Estimating contaminant loads in rivers: AN application of adjusted maximum likelihood to type 1 censored data," Water Res., 41(7), W07003.1-W07003.13(2005).
  5. Chon, T. A., DeLong, L. L., Gilroy, E. J., Hirsch, R. M. and Wells, D. K., "Estimating constituent loads," Water Res., 25(5), 937-942(1989). https://doi.org/10.1029/WR025i005p00937
  6. Chon, T. A., Caulder, D. L., Gilroy, E. J., Zynjuk, L .D. and Summers, R .M., "The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay," Water Res., 28(9), 2353-2364(1992). https://doi.org/10.1029/92WR01008
  7. 한수희, 신현석, 김상단, "낙동강 유역관리를 위한 부하량 유황곡선의 적용 가능성," 한국물환경학회지, 23, 620-627 (2007b).
  8. 김재철, 김상단, "오염총량관리 유량측정자료를 이용한 낙동강 유역 유황분석," 한국물환경학회지, 23(3) 332-338 (2007).
  9. 한수희, 강두기, 신현석, 유재정, 김상단, "비편향 회귀분석 모형을 이용한 낙동강 본류 부유사량 산정방법의 신뢰도 향상," 한국물환경학회지, 23, 251-259(2007a).
  10. Colby, B. R., "The relationship of sediment discharge to streamflow," Technical Report, U.S. Geol, Surv., Reston, Va, (1955).
  11. Miller, C. R., "Analysis of flow-duration, sediment-rating curve method of computing sediment yield, technical report," U.S. Bur. of Reclam., Washington, D.C.(1951).
  12. Finney. D. J., "On the Distribution of a Variate Whose Logarithm Normally Distributed," J. R. Stat. Soc. Suppl., 7, 155-161(1941).
  13. Nash, J. E. and Sutcliffe, J. V., "River flow forecasting through conceptual models part 1-A discussion of principles," J. Hydrol., 10, 282-290(1970). https://doi.org/10.1016/0022-1694(70)90255-6