Comparison of Bioactive Compounds Contents in Different Fruit Tissues of June-bearing Strawberry Cultivars

일계성 딸기 과실의 부위에 따른 바이오 활성 화합물 함량 비교

  • Kim, Sung-Kyeom (Department of Plant Science, Seoul National University) ;
  • Bae, Ro-Na (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Hwang, Hyun-Seung (Department of Plant Science, Seoul National University) ;
  • Kim, Moo-Jung (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Sung, Hye-Ryeong (Department of Plant Science, Seoul National University) ;
  • Chun, Chang-Hoo (Department of Plant Science, Seoul National University)
  • 김성겸 (서울대학교 식물생산과학부) ;
  • 배로나 (서울대학교 농생명과학공동기기원) ;
  • 황현승 (서울대학교 식물생산과학부) ;
  • 김무정 (서울대학교 농업생명과학연구원) ;
  • 성혜령 (서울대학교 식물생산과학부) ;
  • 전창후 (서울대학교 식물생산과학부)
  • Received : 2010.08.09
  • Accepted : 2010.10.15
  • Published : 2010.12.31

Abstract

We evaluated the bioactive compounds including carbohydrates (CH), organic acids (OA), ascorbic acid (AA), anthocyanin (AC), and ellagic acid (EA) in the achenes, epidermis, and flesh of fully ripe strawberry fruits of the 'Maehyang', 'Seolhyang', 'Keumhyang', 'Akiheme', and 'Red pearl' cultivars. The total contents of CH, OA, AA, and AC were significantly greater in the epidermis than in other tissues, while the EA content was significantly greater in the achenes than in other tissues. The AA content of the epidermis ranged from $49.1-69.2mg{\cdot}100g^{-1}$ FW and was significantly greater than the content of the flesh, while AA was not detected in the achenes of any of the tested strawberry cultivars. The AA contents of the epidermis and flesh of the 'Maehyang' were 69.2 and $42.2mg{\cdot}100g^{-1}$ FW, respectively, and were greater than those of the other cultivars. The AC contents in the epidermis and achenes of the 'Keumhyang' were $74.0mg{\cdot}100g^{-1}$ FW and $36.7mg{\cdot}100g^{-1}$ DW, respectively, greater than those of the other cultivars. The EA content of the achenes of the 'Seolhyang' was $215.5mg{\cdot}100g^{-1}$ DW, significantly greater than those of the other cultivars. Results indicate that the antioxidant levels and other chemical compounds of strawberry fruits vary significantly among different fruit tissues. Our results also suggest that the recently introduced Korean 'Maehyang', 'Seolhyang', and 'Keumhyang' contain higher levels of antioxidants than other major June-bearing strawberry cultivars. These cultivars are feasible selections for both growers and consumers.

'매향', '설향', '금향', '아키히메'와 '레드펄' 딸기 과실 부위에서 환원당, 유기산, 아스코르빈산, 안토시아닌 및 엘라직산의 함량을 비교하였다. 환원당, 유기산, 아스코르빈산 및 안토시아닌 함량은 딸기 표피에서 다른 부위의 함량 보다 유의하게 높았으나 엘라직산의 함량은 딸기 수과에서 높았다. '매향' 딸기의 표피 및 과육에서 아스코르빈산 함량은 각각 69.2와 $42.2mg{\cdot}100g^{-1}$ FW로 다른 품종에 비해 높았다. 그리고 '금향' 딸기의 표피 및 수과에서 안토시아닌 함량은 각각 $74.0mg{\cdot}100g^{-1}$ FW과 $36.7mg{\cdot}100g^{-1}$ DW으로 타 품종에 비해 유의하게 높았으며 '설향' 딸기 수과에서 엘라직산의 함량은 $215.5mg{\cdot}100g^{-1}$ DW로 타 품종에 비해 유의하게 높았다. 딸기 과실의 부위에 따라 바이오 활성 화합물들의 함량은 크게 차이가 있었으며 '매향', '설향' 및 '금향' 딸기 품종은 바이오 활성 화합물들의 함량이 높아 소비자들에게는 고품질 딸기로 인식될 수 있어 국내 육성 품종 딸기의 보급이 확산될 것으로 기대된다. 그리고 본 기초적 결과들은 딸기 가공 분야 및 영양학 연구 분야에도 유용하게 활용될 것으로 판단된다.

Keywords

References

  1. Aaby, K., G. Skrede, and R.E. Wrolstad. 2005. Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa). J. Agric. Food Chem. 53: 4032-4040. https://doi.org/10.1021/jf048001o
  2. Cheng, G.W. and P.J. Breen. 1992. Cell count and size in relation to fruit size among strawberry cultivars. J. Amer. Soc. Hort. Sci. 117:946-950.
  3. Clifford, M.N. and A. Scalbert. 2000. Ellagitannis-nature, occurrence and dietary burden. J. Sci. Food Agric. 80:1118-1125. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-9
  4. Crespo, P., J. Gine Bordonaba, L.A. Terry, and C. Carlen. 2010. Characterization of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 122:16-24. https://doi.org/10.1016/j.foodchem.2010.02.010
  5. Daniel, E.M., A.S. Krupnick, Y.H. Heur, J.A. Blinzler, R.W. Nims, and G.D. Stoner. 1989. Extraction, stability, and quantification of ellagic acid in various fruits and nuts. J. Food Comp. Anal. 2:338-349. https://doi.org/10.1016/0889-1575(89)90005-7
  6. Ferreyra, R.M., S.Z. Vina, A. Mugridge, and A.R. Chaves. 2007. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci. Hort. 112:27-32. https://doi.org/10.1016/j.scienta.2006.12.001
  7. Guo, C., J. Yang, J. Wei, Y. Li, J. Xu, and Y. Jiang. 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 23:1719-1726. https://doi.org/10.1016/j.nutres.2003.08.005
  8. Hakkien, S.H., S.O. Karenlampi, H.M. Mykkanen, I.M. Heinonen, and A.R. Torronen. 2000. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol. 212:75-80. https://doi.org/10.1007/s002170000184
  9. Hannum, S.M. 2004. Potential impact of strawberries on human health: A review of the science. Crit. Rev. Food Sci. Nutr. 44:1-17. https://doi.org/10.1080/10408690490263756
  10. Havis, A.L. 1943. A developmental analysis of the strawberry fruit. Amer. J. Bot. 30:311-314. https://doi.org/10.2307/2437460
  11. Holcroft, D.M. and A.A. Kader. 1999. Carbon dioxide-induced changes in color and anthocyanin synthesis of stored strawberry fruit. HortScience 34:1244-1248.
  12. Kim, S., K.S. Kim, and J.B. Park. 2006. Changes of various chemical components by the difference of the degree of ripening and harvesting factors in two single-harvested peppers (Capsicumannuum L.). Kor. J. Food Sci. Technol. 38:615-620.
  13. Lundergan, C.A. and J.N. Moore. 1975. Inheritance of ascorbic acid content and color intensity in fruits of strawberry (Fragaria ${\times}$ ananassa Duch.). J. Amer. Soc. Hort. Sci. 106:633-635.
  14. Mass, J.L., S.Y. Wang, and G.J. Galleta. 1991. Evaluation of strawberry cultivars for ellagic acid content. HortScience 26:66-68.
  15. Nascimento, J.R.O., B.K. Higuchi, M.L.P.A. Gómez, R.A. Oshiro, and F.M. Lajolo. 2005. L-Ascorbate biosynthesis in strawberries: L-Galactono-1,4-lactone dehydrogenase expression during fruit development and ripening. Postharvest Biol. Tech. 38:34-42. https://doi.org/10.1016/j.postharvbio.2005.05.014
  16. Nitsch, J.P. 1950. Growth and morphogenesis of the strawberry as related to auxin. Amer. J. Bot. 37:211-215. https://doi.org/10.2307/2437903
  17. Olsson, M.E., J. Ekvall, K.E. Gustavsson, J. Nilsson, D. Pillai, I. Sjoholm, U. Svensson, B. Akesson, and M.G.L. Nyman. 2004. Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria ${\times}$ ananassa): Effects of cultivar, ripening, and storage. J. Agric. Food Chem. 52:2490-2498. https://doi.org/10.1021/jf030461e
  18. Perkins-Veazie, P. 1995. Growth and ripening of strawberry fruit. Hort. Rev. 17:267-297.
  19. Slate, G.L. and W.N. Robinson. 1945. Ascorbic acid content of strawberry varieties and selection at Geneva. J. Amer. Soc. Hort. Sci. 47:219-223.
  20. Sturm, K., D. Koron, and F. Stampar. 2003. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 83:417-422. https://doi.org/10.1016/S0308-8146(03)00124-9
  21. Suutarinen, J., L. Anakainen, and K. Autio. 1998. Comparison of light microscopy and spatially resolved flourier transform infrared (FT-IR) microscopy in the examination of cell wall components of strawberries. Lebensm Wiss Technol. 31:595-601. https://doi.org/10.1006/fstl.1997.0331
  22. Wang, S.Y., W. Zheng, and G.J. Galletta. 2002. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 50:6534-6542. https://doi.org/10.1021/jf020614i
  23. Williner, M.R., M.E. Pirovani, and D.R. Güemes. 2003. Ellagic acid content in strawberries of different cultivars and ripening stages. J. Sci. Food Agric. 83:842-845. https://doi.org/10.1002/jsfa.1422
  24. Yoshida, Y. and H. Tamura. 2005. Variation in concentration and composition of anthocyanins among strawberry cultivars. J. Japan. Soc. Hort. Sci. 74:36-41. https://doi.org/10.2503/jjshs.74.36