Comparison of Indoor CO2 Removal Capability of Five Foliage Plants by Photosynthesis

다섯가지 관엽식물의 광합성에 의한 실내 이산화탄소 제거능력 비교

  • Park, Sin-Ae (Department of Environmental Science, Kon-Kuk University) ;
  • Kim, Min-Gi (Department of Environmental Science, Kon-Kuk University) ;
  • Yoo, Mung-Hwa (Department of Environmental Science, Kon-Kuk University) ;
  • Oh, Myung-Min (Department of Horticultural Science, Chungbuk National University) ;
  • Son, Ki-Cheol (Department of Environmental Science, Kon-Kuk University)
  • Received : 2010.05.19
  • Accepted : 2010.06.28
  • Published : 2010.10.31

Abstract

This study was conducted to determine the effects of foliage plants on reducing indoor carbon dioxide ($CO_2$). Five foliage plants such as $Hedera$ $helix$ L., $Ficus$ $benjamina$ L., $Pachira$ $aquatica$, $Chamaedorea$ $elegans$, and $Ficus$ $elastica$ were selected and cultivated in two different growth medium (peatmoss and hydroball). Each plant was placed in an airtight chamber and then treated with the combinations of two different $CO_2$ concentrations (500 or 1,000 ppm) and two different light intensities (50 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The change of $CO_2$ concentration (ppm) in the airtight chamber during day and night was measured and then converted into the photosynthetic rate (${\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$). As the results, each foliage plant reduced $CO_2$ level in the airtight chamber for one hour by photosynthesis. $Pachira$ $aquatica$ and $Ficus$ $elastica$ absorbed $CO_2$ more effectively compared to the other plants. The plants exposed to higher $CO_2$ concentration (1,000 ppm) and higher light intensity ($200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed more effective $CO_2$ elimination rate and photosynthetic rate. The plants that have wide leaves and big leaf areas such as $Pachira$ $aquatica$, $Hedera$ $helix$ L.,and $Ficus$ $elastica$ showed higher photosynthetic rate than the other plants that have smaller leaves. Released $CO_2$ concentration by respiration of the plants during the night was very low compared to the absorbed $CO_2$ concentration by photosynthesis during the day. There was no significant difference between peatmoss and hydroball medium on reducing $CO_2$ concentration and increasing photosynthetic rate. In conclusion, this study suggested that foliage plants can effectively eliminate indoor $CO_2$. Optimum environmental control in relation to photosyntheis and usage of right indoor foliage plants having lots of leaves and showing active photosynthesis even under low light intensity like indoor light condition would be required to increase the elimination capacity of indoor $CO_2$.

본 연구는 실내 관엽식물들의 실내 이산화탄소 제거능을 규명하기 위해서 수행되었다. 본 실험에서는 5종의 관엽식물인 헤데라($Hedera$ $helix$ L.), 벤자민 고무나무($Ficus$ $benjamina$ L.), 파키라($Pachira$ $aquatica$), 테이블 야자($Chamaedorea$ $elegans$), 인도 고무나무($Ficus$ $elastica$)를 사용하였다. 피트모스 배지와 하이드로볼 배지에 이식된 식물을 각각 밀폐 동화상에 넣고, 이산화탄소 500ppm 또는 1,000ppm을 주입하고, 광도는 50과 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 두 수준으로 하여, 주간과 야간의 이산화탄소 변화량을 1시간 동안 측정하였다. 또한, 측정된 이산화탄소의 변화량을 광합성 속도(${\mu}molCO_2{\cdot}m^{-2}{\cdot}s^{-1}$)로 산출하였다. 주간에 모든 품종의 식물들이 밀폐 동화상 안의 이산화탄소를 흡수하였다. 파키라($Pachira$ $aquatica$)와 인도 고무나무($Ficus$ $elastica$)가 이산화탄소 제거에 효과적이었다. 초기 주입된 이산화탄소 농도가 500ppm일 때보다 1000ppm일때, 광도가 $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$일 때보다 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$일 때 이산화탄소 흡수량이 크며, 광합성률이 높은 것으로 나타났다. 식물별로 광합성률을 비교해 보면, 파키라($Pachira$ $aquatica$), 헤데라($Hedera$ $helix$ L.), 인도 고무나무($Ficus$ $elastica$)와 같이 엽면적이 넓은 식물들이 상대적으로 엽면적이 작은 테이블 야자($Chamaedorea$ $elegans$)와 벤자민 고무나무($Ficus$ $benjamina$ L.)와 같은 식물들보다 높은 광합성률을 나타내었다. 또한 모든 품종에서 주간에 흡수된 이산화탄소량에 비해 야간에 식물의 호흡에 의해서 방출되는 이산화탄소량은 매우 적은 것으로 나타났다. 한편, 배지 종류에 따라 이산화탄소 흡수량과 광합성률에서 차이는 크게 나타나지 않았다. 결론적으로, 이 실험을 통해서 관엽식물을 이용하여 실내 오염물질인 이산화탄소를 제거할 수 있으며, 주간에 식물이 광합성 잘 할 수 있는 환경을 조성해 주거나, 부피가 크고 실내와 같은 저광 조건에서 활발한 광합성이 가능한 식물을 선택함으로써 이산화탄소 제거를 극대화시킬 수 있을 것이다.

Keywords

References

  1. ASHRAE. 1989. Sandards for ventilation required for acceptable indoor air quality. ASHRAE 62-1989R. Atlanta.
  2. Arashidani, K., M., Yoshikawa, T., Kwamoto, K. Matsuno, F. Kayama, and Y. Koda. 1996. Indoor pollution from heating. Ind. Health. 34:205-215. https://doi.org/10.2486/indhealth.34.205
  3. Cox, P.M., R.A. Betts, C.D. Jones, S.A. Spall, and I.J. Totterdell. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184-187. https://doi.org/10.1038/35041539
  4. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell Environ. 12:1-30. https://doi.org/10.1111/j.1365-3040.1989.tb01913.x
  5. Dorgan, C.B., C.E. Dorgan, M.S. Kanarek, and A.J. Willman. 1998. Health and productivity benefits of improved indoor air quality. ASHRAE Transactions 104 (Pt. 1):658-666.
  6. Guieysse, B., C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah. 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnol. Adv. 26:398-410. https://doi.org/10.1016/j.biotechadv.2008.03.005
  7. Johnston, P.K., G. Hadwen, J. McCarthy, and J.R. Girman. 2002. A screening-level ranking of toxic chemicals at levels typically found in indoor air. US-EPA 930-936.
  8. Kang, H., B.H. Kwack, and W.K. Sim. 1990. Assessing studies on the recent use and change of indoor landscaping plants at apartment houses in Seoul. J. Kor. Inst. Landscape Archtecture 18:1-8.
  9. Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
  10. Kim, Y.H., J.H. Bae, J.I. Son, Y.B. Lee, H.K. Jang, H.J. Jeon, and B.Y. Jung. 2003. Bio Environmental Control. Hwang-Moon, Seoul.
  11. Kuzyakov, Y. 2006. Sources of $CO_{2}$ efflux from soil and review of partitioning methods. Soil Biol. Biochem. 38:425-448. https://doi.org/10.1016/j.soilbio.2005.08.020
  12. Han, S.W. 2001. Removal efficiency of indoor air pollutant gases using oriental orchids. PhD Diss., Seoul Woman's Univ., Seoul, Korea.
  13. Hong, J. 2000. Benzene and formaldehyde removal by indoor foliage plants. PhD Diss., Korea Univ., Seoul, Korea.
  14. Ministry of Environment. 1997. Environment white paper. Ministry of Environment.
  15. Moriske, H.J., M. Drews, G. Ebert, G. Menk, C. Scheller, M. Schöndube, and L. Konieczny. 1996. Indoor air pollution by different heating systems: Coal burning, open fireplace and central heating. Toxicology Letters 88:349-354. https://doi.org/10.1016/0378-4274(96)03760-5
  16. Park, S.A., M.G. Kim, M.H. Yoo, M.M. Oh, and K.C. Son. 2010. Plant physiological responses in relation to temperature, light intensity, and $CO_{2}$ concentration for the selection of efficient foliage plants on indoor air purification. Kor. J. Hort. Sci. Technol. Submitted.
  17. Park, S.H. and Y.B. Lee. 1997. Indoor $CO_{2}$ and NO2 fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38:551-555.
  18. Park, S.H. and K.K. Shim. 1989. A Study on the utilization status of the interior landscape plants in large buildings in Seoul. J. Kor. Inst. Landscape Archtecture 17:43-54.
  19. Prasanna, P., P. Jaiswal, S. Nayak, A. Sood, and B.D. Kaushik. 2009. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 49:89-97. https://doi.org/10.1007/s12088-009-0009-x
  20. Robinson, J. and W.C. Nelson. 1995. National human activity pattern survey data base. U.S. EPA. Research Triangle Park, NC.
  21. Sawada, A. and T. Oyabu. 2008. Purification characteristics of pothos for airborne chemicals in growing conditions and its evaluation. Atmospheric Environ. 42:594-602. https://doi.org/10.1016/j.atmosenv.2007.10.028
  22. Schwarzberg, M.N. 1993. Carbon dioxide level as migraine threshold factor: Hypothesis and possible solutions. Medical Hypotheses 41:35-36. https://doi.org/10.1016/0306-9877(93)90030-T
  23. Shiotsu, M. and I.K. Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52.
  24. Sierra, J. and P. Renault. 1995. Oxygen consumption by soil microorganisms as affected by oxygen and carbon dioxide levels. Appl. Soil Ecol. 2:175-184. https://doi.org/10.1016/0929-1393(95)00051-L
  25. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310.
  26. Wanner, H.U. 1993. Sources of pollutants in indoor air. IARC Scientific Publications 109:19-30.
  27. World Health Organisation; 2000, Air quality guidelines for Europe. 2nd ed. Copenhagen.
  28. Woleverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. p. 1-2. NASA Report.
  29. Zhang, J.J. and K.R. Smith. 2003. Indoor air pollution: A global problem. British Medical Bul. 68:209-225. https://doi.org/10.1093/bmb/ldg029