Influence of Potassium Concentrations in Fertilizer Solution on the Growth, Appearance of Physiological Disorder and Tissue Nutrient Contents of Eggplant (Solanum melogena L.)

칼륨 시비농도가 가지의 생육과 생리장해 발현 및 무기원소 함량에 미치는 영향

  • Kim, Jeong-Man (Jeollabuk-do Agricultural Research & Extension Services) ;
  • Kim, Ju (Jeollabuk-do Agricultural Research & Extension Services) ;
  • Chon, Hyong-Gwon (Jeollabuk-do Agricultural Research & Extension Services) ;
  • Park, Eun-Seok (Jeollabuk-do Agricultural Research & Extension Services) ;
  • Jeong, Jong-Seong (Jeollabuk-do Agricultural Research & Extension Services) ;
  • Choi, Jong-Myung (Department of Horticulture, Chungnam National University)
  • Received : 2010.03.05
  • Accepted : 2010.07.01
  • Published : 2010.10.31

Abstract

Objective of this research was to investigate the effect of various potassium concentrations in fertilizer solution on growth of and nutrient uptake by 'Chugyang' eggplant ($Solanum$ $melongena$ L.). Tissue analyses were conducted to determine the threshold levels of potassium in plants when disorders develop for potassium. The lower leaves of K deficient plants became spotted, yellowing in color, and finally necrosis occurred. The necrosis spread inward and upward. K toxic plants developed necrotic spot at the margin of old leaves and the surface of old leaves were twisted. The tissue K contents in the most recently fully expanded leaves and dry weight of full above ground plant tissue at 35 days after transplanting showed linear and quadratic response to elevated K concentrations with the equation of y=1.127+0.3147x ($R^2$=0.8916) and y=14.92+2.2743x-$0.1402x_2$ ($R^2$=0.8659). When 10% reduction in dry weight set to threshold levels, optimum tissue K contents are in the range from 2.1 to 5.1%. The yield through 150 days after transplanting and tissue K contents at 150 days after transplanting also showed quadratic and linear responses to elevated potassium concentrations in fertigation solution with the equation of y=153.24+345.5x-$18.46x^2$ ($R^2$=0.8620) and y=0.9921+0.3860x ($R^2$=0.9611), respectively. When the 10% reduction in yield is set to threshold levels, the tissue K contents for maximum yield should be around 3.4% to 5.9% in most recently fully expanded leaves.

칼륨 시비농도를 조절하여 관비할 때 '축양' 가지에서 발현하는 생리장해 증상 그리고 식물 생장 및 수확량과 관련한 식물체내의 칼륨 한계농도를 구명하고자 본 연구를 수행하였다. 칼륨이 결핍된 초기에는 하엽에 반점형태의 황화현상이 나타났으며, 증상이 진행될수록 반점부분이 커지고 상위엽으로 확산되었다. 칼륨이 결핍된 식물체에서 착과된 과일은 길이 생장을 하지 못하고 과일 선단부 보다 기부쪽 비대가 적어 곤봉형태를 보였다. 칼륨 과잉시 잎은 가장자리가 요철형태로 굴곡이 지거나 갈색으로 변하면서 위로 젖혀지는 증상을 나타냈으며, 열매는 구부러지거나 표면의 광택이 감소하였다. 관비용액의 칼륨 농도에 대하여 정식 35일 후 지상부의 건물중과 식물체내 칼륨 함량은 2차곡선회귀적 반응(y=14.92+2.2743x-$0.1402x^2$, $R^2$=0.8659)과 직선적 반응(y=1.127+0.3147x, $R^2$=0.8916)을 보였다. 최대 건물중을 생산한 처리보다 10% 억제된 처리의 칼륨 함량을 최저 및 최고 한계점으로 설정하면 '축양' 가지의 재배를 위한 허용 가능한 식물체 내 칼륨 함량이 가장 최근에 완전히 전개된 잎을 기준으로 2.1-5.1% 범위였다. 칼륨 시비농도가 증가함에 따라 정식 후 150일까지의 수확량과 150일의 식물체 칼륨 함량도 2차곡선회귀적 반응(y=153.24+345.5x-$18.46x^2$, $R^2$=0.8620)과 직선적 반응(y=0.9921+0.3860x, $R^2$=0.9611) 을 보였다. 최대수량의 90%를 수량감소를 방지하기 위한 한계점으로 설정할 경우 가장 최근에 완전히 전개된 잎을 기준으로 K 함량이 3.4-5.9%의 범위에 포함되도록 시비농도를 조절해야 할 것으로 판단하였다.

Keywords

References

  1. Bennett, W.F. 1993. Nutrient deficiencies and toxicities in crop plants. AS Press, St. Paul, Minn.
  2. Bould, C., E.J. Hewitt, and P. Needham. 1983. Diagnosis of mineral disorders in plants. Vol. 1. Principles. Her Majesty Stationery Office, London.
  3. Chapman, H.D. and P.F. Pratt. 1961. Method of analysis for soil, plants and waters. Univ. of Calif., Div. Agr. Sci., Berkeley, CA.
  4. Choi, J.M. and J.Y. Park. 2007. Growth, deficiency symptom and tissue nutrient contents of leaf perilla (Perilla frutesens Britt) as influenced by potassium concentrations in the fertigation solution. J. Bio-Environ. Cont. 16:372-378.
  5. Choi, J.M., S.K. Jeong, K.H. Cha, H.J. Chung, and K.S. Seo. 2000. Deficiency symptom, growth characteristics, and nutrient uptake of 'Nyoho' strawberry as affected by controlled potassium concentrations in fertilizer solution. J. Kor. Soc. Hort. Sci. 41:350-355.
  6. Choi, J.M., S.K. Jeong, and M.K. Yoon. 2009. Characterization of symptom and determination of tissue critical concentration for diagnostic criteria in 'Maehyang' strawberry as influenced by potassium concentration in the fertigation solution. Kor. J. Hort. Sci. Technol. 27:226-232.
  7. Eastin, E.F. 1978. Total nitrogen determination for plant material containing nitrate. Anal. Biochem. 85:591-594. https://doi.org/10.1016/0003-2697(78)90259-2
  8. Gibson, J.L., D.S. Pitchay, A.L. Williams-Rhodes, B.E. Whipker, P.V. Nelson, and J.M. Dole. 2007. Nutrient deficiencies in bedding plants. Ball Publishing, Batavia, Illinois.
  9. Hanan, J.J. 1998. Greenhouses: Advanced technology for protected horticulture. Prentice Hall, Upper Saddle River, NJ.
  10. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method for growing plants without soil. Univ. of Calif. Agri. Exp. Sta. Cirular 347.
  11. Kim, J.M., J.M. Choi, H.J. Chung, and J.S. Choi. 2005. Effect of potassium concentrations in fertigation solution on growth and nutrient uptake of cut chrysanthemum 'Biarritz'. J. Kor. Flower Res. Soc. 13:161-168.
  12. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press Inc., San Diego, USA.
  13. Nelson, P.V. 2003. Greenhouse operation and management. 6th ed. Prentice Hall, NJ.
  14. Ulrich, A. 1993. Potato. p. 149-156. In: W.F. Bennett (ed.). Nutrient deficiencies & toxicities in crop plants. APS Press, St. Paul, Minnesota.
  15. Warncke, P.D. 1986. Analyzing greenhouse growth media by the saturation extraction method. HortScience 211:223-225.