Developmental Stage and Temperature Influence Elongation Response of Petiole to Low Irradiance in Cyclamen persicum

저광도에 대한 시클라멘 엽병의 발육 단계 및 온도 조건별 신장 반응

  • Oh, Wook (Department of Horticultural Science, Yeungnam University) ;
  • Kim, Ki-Sun (Department of Plant Science, Seoul National University)
  • 오욱 (영남대학교 원예학과) ;
  • 김기선 (서울대학교 식물생산과학부)
  • Received : 2010.03.24
  • Accepted : 2010.06.11
  • Published : 2010.10.31

Abstract

Reduced irradiance promotes shoot elongation depending on developmental stage and environmental factors and decreases plant quality in $Cyclamen$ $persicum$ Mill. To determine the petiole elongation responses to low irradiance, 'Metis Scarlet Red' cyclamen at different developmental stages [juvenile (5-6 unfolded leaves), transitional (1-3 visible flower buds), or mature (1-3 elongating peduncles)] was grown in growth modules at 60 (low light, LL) or 240 (high light, HL) ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD within the growth chambers at different temperatures [16/12 (low temperature, LT), 22/18 (medium temperature, MT), or 28/$24^{\circ}C$ (high temperature, HT) (day/night)]. In Experiment I, juvenile plants were either kept in an LL or HL module during the entire treatment of 4 weeks or were transferred to the other module at 1, 2, or 3 weeks after treatment in an MT chamber. In Experiment II, juvenile, transitional, or mature plants were moved to the HL module at 0, 3, 6, 9, or 12 days after being placed in the LL module at the MT chamber and grown for 21 days. In Experiment III, transitional plants were moved to the HL module at 0, 3, 6, 9, or 12 days after being placed in the LL module at the LT, MT, or HT chambers. As the exposure duration to LL increased from 0 to 4 weeks or from 0 to 12 days, petiole length and plant height increased at all temperatures and developmental stages. In Experiment I, the exposure to LL during the latter period, rather than the early period, increased elongation rate. In Experiment II, petiole elongation in transitional plants was more sensitive to LL than juvenile or mature plants during the early period of the treatment for 12 days. In Experiment III, petiole length increased with increasing temperature and exposure duration to LL. Petiole elongation rate at HT increased rapidly from the beginning of LL exposure as compared to LT. Increase of $6^{\circ}C$ in temperature had the similar effect to LL exposure for 3 days in petiole elongation. To conclude, transitional cyclamen under higher temperatures responds more immediately to low irradiance and elongates its petioles.

낮은 광도는 시클라멘($Cyclamen$ $persicum$ Mill.)의 지상부 신장을 촉진하여 분화의 품질을 떨어뜨리는데, 그 정도는 발육단계와 환경요인에 따라 달라지는 것으로 보인다. 저광도에 대한 엽병의 신장 반응 양상을 알아보기 위해, 유년상(전개엽 5-6매), 전이상(화아 1-3개) 및 성년상(화경 신장 중인 화아 1-3개)의 'Metis Scarlet Red' 시클라멘을 선별하여 명기/암기의 온도가 16/12(저온, LT), 22/18(중온, MT), 28/$24^{\circ}C$ (고온, HT)로 유지되는 대형 생장상의 생장 모듈 내에서 생장시켰다. 생장 모듈은 명기 동안 두 가지 광도조건[60(저광, LL), 240(고광, HL) ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD]으로 유지되었다. 실험 I에서는 MT 생장상에서 유년상의 식물체를 LL 또는 HL 모듈에 4주 동안 계속 두거나 처리 1, 2, 3주후 다른 광도의 모듈로 상호 이동시킨 후 신장 반응을 조사하였다. 실험II에서는 MT 생장상에서, 유년상, 전이상, 그리고 성년상의 식물체를 LL 모듈에 넣은 지 0, 3, 6, 9, 12일째에 HL 모듈로 옮기고 21일째에 신장 반응을 조사하였다. 실험 III에서는 LT, MT, HT 생장상에서 전이상의 식물체를 LL 모듈에 넣은 지 0, 3, 6, 9, 12일째에 HL 모듈로 옮기고 21일째에 신장 반응을 조사하였다. LL 노출시간이 0-4주까지 또는 0-12일까지 증가할수록 엽병장과 초장은 모든 온도 조건과 발육단계에서 증가하였다. 4주간 처리된 실험 I에서 후기의 LL 노출이 전기의 노출보다 엽병의 신장속도를 증가시켰다. 실험 II에서, 처리기간 12일 중 초기의 엽병 신장 양상을 보면 전이상 식물체가 유년상이나 성년상보다 LL에 더 민감하게 반응하였다. 실험 III에서, 온도가 증가할수록, 그리고 LL노출시간이 길어질수록 시클라멘의 엽병장은 증가하였다. HT에서의 엽병 신장 속도는 LT와 비교하여 LL처리 초기부터 빠르게 증가하였다. 엽병 신장에 있어서 온도 $6^{\circ}C$ 증가는 3일간 LL 노출과 유사한 효과를 보였다. 결론적으로, 시클라멘은 전이상일 때 고온 하에서 더 즉각적으로 저광도에 반응하여 엽병을 신장시킨다는 것을 알 수 있었다.

Keywords

References

  1. Allard, G., C.J. Nelson, and S.G. Pallardy. 1991. Shade effects on growth of tall fescue: I. Leaf anatomy and dry matter portioning. Crop Sci. 31:163-167. https://doi.org/10.2135/cropsci1991.0011183X003100010037x
  2. Davies, L.J., I.R. Brooking, J.L. Catley, and E.A. Halligan. 2002. Effects of constant temperature and irradiance on the flower stem quality of Sandersonia aurantiaca. Sci. Hort. 93:321-332. https://doi.org/10.1016/S0304-4238(01)00344-2
  3. Dole, J.M. and H.F. Wilkins. 2005. Floriculture: Principles and species. 2nd ed. Pearson Education, Inc., Upper Saddle River, N.J.
  4. Gawronska, H. and R.B. Dwelle. 1989. Partitioning of photoassimilates by potato plants (Solanum tuberosum L.) as influenced by irradiance. I. Partitioning patterns in cultivar Russet Burbank grown under high and low irradiance. Amer. Potato J. 66: 201-213. https://doi.org/10.1007/BF02853443
  5. Gawronsk, H., Y. Yang, K. Furukawa, R.E. Kendrick, N. Takahashi, and Y. Kamiya. 1995. Effect of low irradiance stress on gibberellin levels in pea seedlings. Plant Cell Physiol. 36: 1361-1367.
  6. Hamamoto, H., Y. Shishido, T. Uchumi, and H. Kumakura. 2000. Effects of low light intensity on growth, photosynthesis, and distribution of photoassimilates in tomato plants. Environ. Control Biol. 38:63-69. https://doi.org/10.2525/ecb1963.38.63
  7. Higuchi, H., J.Y. Yonemoto, N. Utsunomiya, and T. Sakuatani. 2001. Shading responses of cherimoya leaf chlorophyll content, leaf morphology, shoot growth, leaf gas exchange and fruit production under plastic house conditions. Environ. Control Biol. 39:255-265. https://doi.org/10.2525/ecb1963.39.255
  8. Kim, S.E. and H. Okubo. 1996. Hormonal control of growth habit in determinate lablab bean (Lablab purpureus). Sci. Hort. 65:95-104. https://doi.org/10.1016/0304-4238(95)00872-1
  9. Knecht, G.N. and J.W. O'Leary. 1972. The effect of light intensity on stomate number and density of Phaseolus vulgaris L. leaves. Bot. Gaz. 133:132-134. https://doi.org/10.1086/336626
  10. Kurepin, L.V., R.P. Pharis, D.M. Reid, and C.C. Chinnappa. 2006. Involvement of gibberellins in the stem elongation of sun and shade ecotypes of Stellaria longipes that is induced by low light irradiance. Plant Cell Environ. 29:1319-1328. https://doi.org/10.1111/j.1365-3040.2006.01512.x
  11. Le Nard, M. and A. de Hertogh. 1993. General chapter on spring flowering bulbs: Cyclamen, p. 709-712. In: A. de Hertogh and M. Le Nard (eds.). The physiology of flowering bulbs. Elsevier, Amsterdam, The Netherlands.
  12. Mass, F.M. and J. van Hattum. 1998. Thermomorphogenic and photomorphogenic control of stem elongation in Fuchsia is not mediated by changes in responsiveness to gibberellins. J. Plant Growth Regul. 17:39-45. https://doi.org/10.1007/PL00007010
  13. Menzel, C.M. 1985. Tuberization in potato at high temperatures: Interaction between temperature and irradiance. Ann. Bot. 55:35-39. https://doi.org/10.1093/oxfordjournals.aob.a086875
  14. Morelli, G. and I. Ruberti. 2002. Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci. 7:399-404. https://doi.org/10.1016/S1360-1385(02)02314-2
  15. Nii, N. and T. Kuroiwa. 1988. Anatomical changes including chloroplast structure in peach leaves under different light conditions. J. Hort. Sci. 63:37-45.
  16. Oh, W., I.H. Cheon, K.S. Kim, and E.S. Runkle. 2009. Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience 44: 341-344.
  17. Onweme, I.C. and M. Johnston. 2000. Influence of shade on stomatal density, leaf size, and other leaf characteristics in the major tropical root corps, tannia, sweet potato, yam, cassava, and taro. Expt. Agric. 36:509-516.
  18. Pinthus, M.J. and M. Abraham. 1996. Effects of light, temperature, gibberellin (GA3) and their interaction on coleoptile and leaf elongation of tall, semi-dwarf, and dwarf wheat. Plant Growth Regul. 18:239-247. https://doi.org/10.1007/BF00024388
  19. Pinthus, M.J., M.D. Gale, N.E.J. Appleford, and J.R. Lenton. 1989. Effect of temperature on gibberellin (GA) responsiveness and on endogenous GA1 content of tall and dwarf wheat genotypes. Plant Physiol. 90:854-859. https://doi.org/10.1104/pp.90.3.854
  20. Potter, T.I., S.B. Rood, and K.P. Zanewich. 1999. Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 207:505-511. https://doi.org/10.1007/s004250050510
  21. Rahim, M.A. and R. Fordham. 1991. Effect of shade on leaf and cell size and number of epidermal cells in garlic (Allium sativum). Ann. Bot. 67:167-171. https://doi.org/10.1093/oxfordjournals.aob.a088116
  22. Smith, H. 1982. Light quality, photoperception, and plant strategy. Ann. Rev. Plant Physiol. 33:481-518. https://doi.org/10.1146/annurev.pp.33.060182.002405
  23. Sun, W.H. and R.K. Nishimoto. 1999. Thermoperiodicity in shoot elongation of purple nutsedge. J. Amer. Soc. Hort. Sci. 124:140-144.
  24. Sundberg, M.D. 1981a. Apical events prior to floral evocation in Cyclamen persicum 'F-1 Rosemunde' (Primulaceae). Bot. Gaz. 142:27-35. https://doi.org/10.1086/337192
  25. Sundberg, M.D. 1981b. The development of leaves and axillary flowers along the primary shoot axis of Cyclamen persicum 'F-1 Rosemunde' (Primulaceae). Bot. Gaz. 142:214-221. https://doi.org/10.1086/337216
  26. Sundberg, M.D. 1982. Leaf initiation in Cyclamen persicum (Primulaceae). Can. J. Bot. 60:2231-2234. https://doi.org/10.1139/b82-273
  27. Tan, Z.G. and Y.L. Qian. 2003. Light intensity affects gibberellic acid content in Kentucky bluegrass. HortScience 38:113-116.
  28. Tonkinson, C.L., R.F. Lyndon, G.M. Arnold, and J.R. Lenton. 1997. The effect of temperature and the Rht3 dwarfing gene on growth, cell extension, and gibberellin content and responsiveness in the wheat leaf. J. Expt. Bot. 48:963-970. https://doi.org/10.1093/jxb/48.4.963
  29. Tsurushima, H. 1969. Growing methods of Cyclamen persicum (1): Characteristics of growth and flowering. Agric. Hort. 44:533-538.
  30. Vidal, A.M., W. Ben-Cheikh, M. Talon, and J.L. García-Martínez. 2003. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta 217:442-448. https://doi.org/10.1007/s00425-003-0999-2
  31. Villegas, E., M. Perez, and M.T. Lao. 2006. Influence of lighting levels by shading cloths on Cyclamen persicum quality. Acta Hort. 711:145-150.
  32. Widmer, R.E. 1992. Cyclamen, p. 385-407. In: R.A. Larson (ed.). Introduction to floriculture. 2nd ed. Academic Press, San Diego, CA.
  33. Widmer, R.E. and R.E. Lyons. 1985. Cyclamen persicum, p. 382-390. In: A.H. Halevy (ed.). Handbook of flowering II. CRC Press, Boca Baton, FL.