Change of Total Glucosinolates Level according to Processing Treatments in Chinese Cabbage (Brassica campestris L. ssp. Pekinensis) from Different Harvest Seasons

수확기간별 배추의 가공처리에 따른 total glucosinolates함량변화

  • Kim, Mee-Kyung (Department of Food & Nutrition, Duksung Women's University) ;
  • Hong, Eun-Young (Department of Food & Nutrition, Duksung Women's University) ;
  • Kim, Gun-Hee (Department of Food & Nutrition, Duksung Women's University)
  • 김미경 (덕성여자대학교 식품영양학과) ;
  • 홍은영 (덕성여자대학교 식품영양학과) ;
  • 김건희 (덕성여자대학교 식품영양학과)
  • Received : 2009.04.21
  • Accepted : 2010.04.12
  • Published : 2010.08.31

Abstract

This study was carried out to investigate the level of total glucosinolates in different parts (outer and inner part) of fresh, salted Chinese cabbage ($Brassica$ $campestris$ L. ssp. $Pekinensis$) and Kimchi at different harvesting periods (June-July, August-September, October-November, December-April, and May). For determination of total glucosinolates, Chinese cabbage was used for analytical sample preparation, provided with an anion exchanges column and measured by UV-visible Spectrophotometer. The fresh Chinese cabbage (FCC) that was harvested in June-July contained the highest level of total glucosinolates and was higher in outer part than inner part in all harvesting periods. The salted Chinese cabbage (SCC) that was harvested in May contained the lowest level of total glucosinolates. Total glucosinolates level of SCC in outer part was higher in June-July and August-September. The manufactured Kimchi (K) using harvested Chinese cabbage in June-July and August-September contained the highest level of total glucosinolates while that harvested in May contained the lowest level. The level of total glucosinolates in different parts was higher in inner part than outer part in all harvesting periods except for May. In all harvesting times, the level of total glucosinolates of FCC was higher than processed Chinese cabbage (SCC and K). Based on these results, levels of total glucosinolates are influenced by harvesting periods, parts and processing conditions of Chinese cabbage.

6-7월, 8-9월, 10-11월, 12-4월(2007년) 및 5월(2008년)에 수확한 신선배추, 절임공정 및 김치 제조과정을 거친 배추를 겉잎과 속잎 부위로 나누어 anion-exchange column을 통과시키고 아세톤 침전법을 사용하여 제조한crude myrosinase로 반응시켜 total glucosinolates 함량을 분석하였다. 신선배추의 경우 6-7월 신선배추의 total glucosinolates 함량이 가장 높은 함량을 나타내었으며, 모든 수확기간에서 속잎보다 겉잎이 대체로 높은 것으로 나타났다. 가공처리 한 배추의 total glucosinolates 함량을 분석 한 결과, 절임배추의 경우 8-9월 절임배추에서 가장 높게 나타났으며, 5월 절임배추의 경우 다른 수확기간에 비해 낮은 함량인 것으로 분석되었다. 부위 별 절임배추의 total glucosinolates 함량은 6-7월 절임배추와 8-9월 절임배추의 경우 겉잎의 함량이 속잎의 함량 보다 높은 것으로 분석된 반면, 10-11월, 12-4월 및 5월 절임배추에서는 속잎의 함량이 높은 것으로 확인 되었다. 배추김치의 경우 6-7월, 8-9월 김치의 total glucosinolates 함량은 비교적 높은 함량을 나타내었으며, 5월 김치의 경우 다른 수확시기에 비해 낮은 함량인 것으로 측정되었다. 배추김치의 부위별 total glucosinolates함량은 5월 배추김치의 경우 속잎의 함량이 겉잎의 함량보다 높게 분석된 반면, 6-7월, 8-9월, 10-11월 배추김치의 경우 겉잎의 함량이 속잎의 함량보다 높은 것으로 분석되었다. 모든 수확기간에서 신선배추의 total glucosinolates 함량보다 가공 처리한 절임배추, 배추김치의 total glucosinolates 함량이 감소하는 경향을 볼 수 있었다. 이러한 분석 결과는 배추의 total glucosinolates 함량이 수확기간, 부위 및 가공처리에 따라 영향을 받는 것으로 사료되며, total glucosinolates 함량에 영향을 줄 수 있는 배추의 부위, 품종, 재배방법 및 재배환경(pH, 온도, 기후, 토양 등)은 고려 되어야 한다고 판단된다.

Keywords

References

  1. Agerbirk, N., C.E. Olsen, and J.K. Nielsen. 2001. Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. Arcuata. Phytochemistry. 58:91-100. https://doi.org/10.1016/S0031-9422(01)00151-0
  2. Bang, B.H., J.S. Seo, and E.J. Jeong. 2008. A method for Maintaining Good Kimchi Quality during Fermentation. Kor. J. Food and Nutr. 21:51-55.
  3. Brzezinski, W. and P. Mendelewski. 1984. Determination of total glucosinolate content in Rapeseed meal with Thymol reagent. Z. pfanzenzuchtg. 93:177-183.
  4. Cieslik, E., T. Leszczynska, F.F. Agnieszka, E. Sikora, and P.M. Pisulewski. 2007. Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem. 105:976-981. https://doi.org/10.1016/j.foodchem.2007.04.047
  5. Han, E.S., M.S. Seok, and J.H. Park. 1998. Quality changes of salted Baechu with packaging methods during long term storage. Kor. J. Food Sci. Technol. 30:1307-1311.
  6. Han, S.H., D.W. Lee, E.H. Kim, M.K. Lee, Y.D. Park, S.H. Kim, and B.S. Yoon. 2007. Selection of tobacco plants expressing Chinese cabbage myrosinase gene and quantification of myrosinase gene expression level using quantitative real-time PCR method. Kor. J. Hort. Sci. Technol. 25:29-36.
  7. Hong, S.I., M.K. Lee, and W.S. Park. 2000. Gas composition within Kimchi package as influenced by temperature and seasonal factor. Kor. J. Food Sci. Technol. 32:1326-1330.
  8. Jeong H.W., Y.O. Kim, S.J. Shin, S.H. Kwon, S.D. Cha, and C.H. Cho. 2007. Indole-3-carbinol and genistein inhibit growth of human uterine leiomyoma cells. Kor. J. Obstetrics and Gynecology. 50:880-886.
  9. Kang E.J., S.T. Jeong, B.S. Lim, and J.S. Jo. 1999. Quality changes in winter Chinese cabbage with various storage methods. Kor. J. Post harvest Sci. Technol. 6:173-178.
  10. Kim, B.S., M.J. Kim, O.W. Kim, and G.H. Kim. 2001. Quality change of winter Chinese cabbages of winter Chinese cabbage by different packing and loading during cold storage by different packing and loading during cold storage. Kor. J. Post harvest Sci. Technol. 8:30-36.
  11. Kim, H.O., S.R. Suh, Y.S. Choi, S.N. Yoo, and Y.T. Kim. 2007. Optimal conditions for mechanized salting process of saltinserting method for winter cabbage to produce Kimchi. Kor. J. Food Preserv. 14:695-701.
  12. Kim, J.B., M.S. Yoo, H.Y. Cho, D.W. Choi, and Y.R. Pyun. 1990. Changes in physical characteristics of Chinese cabbage during salting and blanching. Kor. J. Food Sci. Technol. 22:445-450.
  13. Kim, M.J., G.H. Hong, D.S. Chung, and Y.B. Kim. 1998. Quality comparison of Kimchi made from different cultivars of Chinese cabbage. Kor. J. Food Sci. Technol. 39:528-532.
  14. Kim, M.R, K.J. Lee, and H.Y. Kim. 1997. Effect of processing on the content of sulforaphane of broccoli. Kor. J. Soc. Food Sci. 13:422-426.
  15. Kim, S.D., H.D. Park, and M.K. Kim. 1997. Morphological characteristics and composition of cell wall polysaccharides of Brassica campestris var. pekinensis (Baechu). Kor. J. Post harvest Sci. Technol. Agri. Prod. 4:301-309.
  16. Kim, S.D. 1997. Salting and fermentation of Kimchi. J. Food Sci. Technol. 9:187-196.
  17. Ko, Y.T and J.Y. Lee. 2004. Quality characteristics of Kimchi prepared with different part of Chinese cabbage and its quality change by freeze-drying. Kor. J. Food Sci. Technol. 36:784-789.
  18. Kushad M.M., R. Cloyd, and M. Babadoost. 2004. Distribution of glucosinolates in ornamental cabbage and kale cultivars. Scientia Hort. 101:215-221. https://doi.org/10.1016/j.scienta.2003.10.011
  19. Kwon, Y.D., E.Y. Ko, S.J. Hong, and S.W. Park. 2008. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Kor. J. Hort. Sci. Technol. 26:344-349.
  20. Lee, C.H. 1986. Kimchi; Korean fermented vegetable foods. Kor. J. Dietary Cult. 1:395-402.
  21. Lee, I.S., W.S. Park, Y.J. Koo, and K.H. Kang. 1994a. Change in some characteristics of brined Chinese cabbage of fall cultivars during storage. Kor. J. Food Sci. Technol. 26:239-245.
  22. Lee, I.S., W.S. Park, Y.J. Koo, and K.H. Kang. 1994b. Comparison of fall cultivars of Chinese cabbage for Kimchi preparation. Kor. J. Food Sci. Technol. 26:226-230.
  23. Lee, J.S., S.H. Park, Y.S. Lee, B.S. Lim, S.C. Yim, and C.H. Chun. 2008. Characteristics of growth and salting of Chinese cabbage after spring culture analyzed by cultivar and cultivation method. Kor. J. Food Preserv. 15:43-48.
  24. Rosa, E and R. Heaney. 1996. Seasonal glucosinolate variation in protein, mineral and composition of Portuguese cabbages and kale. Animal Feed. Sci. Technol. 57:111-127. https://doi.org/10.1016/0377-8401(95)00841-1
  25. Shim, K.H., N.K. Sung, K.S. Kang, C.W. Ahn, and K.I. Seo. 1992. Analysis of glucosinolates and the change of contents during processing and storage in Cruciferous Vegetables. J. Kor. Soc. Food Nutr. 21:43-48.
  26. Song L.J. and P.J. Thornalley. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chem. Toxicology. 45:216-224. https://doi.org/10.1016/j.fct.2006.07.021
  27. Stoewsand G.S. 1995. Bioactive Organosulfur phytochemicals in Brassica oleracea vegetables a review. Food Chem. Toxic. 33:537-543. https://doi.org/10.1016/0278-6915(95)00017-V
  28. Terry P., A. Wolk, I. Persson, and C. Magnusson. 2001. Brassica vegetables and breast cancer risk. J. Amer. Med. Assoc. 285:2975-2977. https://doi.org/10.1001/jama.285.23.2975
  29. Tyagi, A.K. 2002. Influence of water soaking of mustard cake on glucosinolate hydrolysis, Animal Feed Sci. Technol. 99: 215-219. https://doi.org/10.1016/S0377-8401(02)00142-6
  30. Van Etten C.H., M.E. Daxenbichler, and I.A. Wolff. 1969. Natural glucosunolates (thioglucosinolates) in foods and feeds. J. Agric. Food Chem. 17:483. https://doi.org/10.1021/jf60163a013
  31. Yang, Y.J. 2004. Changes in elasticity, firmness, vitaminC, and carbohydrate during controlled atmosphere storage of sweet pepper fruit. Kor. J. Soc. Hort. Sci. 22:305-309.
  32. Yang, Y.J., K.A. Lee, and K.J. Kim. 1998. Effect of harvest date, cultivation area, plant part, light condition by field stacking on nitrate and nitrite contents in radish and Chinese cabbage. Kor. J. Hort. Sci. and Technol. 16:154.
  33. Yoon, H.H and D.M. Kim. 2000. Changes of brine characteristics during the salting process of winter, spring, and summer Chinese cabbage. Kor. J. Soc. Food Sci. Nutr. 29:26-29.