DOI QR코드

DOI QR Code

The neuroprotective effect of recombinant human erythropoietin via an antiapoptotic mechanism on hypoxic-ischemic brain injury in neonatal rats

  • Kim, Moon-Sun (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Seo, Yoo-Kyung (Dongguk University College of Medicine) ;
  • Park, Hye-Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Lee, Kye-Hyang (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Lee, Kyung-Hoon (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Choi, Eun-Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Jin-Kyung (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Chung, Hai-Lee (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Woo-Taek (Department of Pediatrics, School of Medicine, Catholic University of Daegu)
  • Received : 2010.02.16
  • Accepted : 2010.07.20
  • Published : 2010.10.15

Abstract

Purpose: The neuroprotective effects of erythropoietin (EPO) have been recently shown in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity; however, limited data are available for such effects during the neonatal periods. Therefore, we investigated whether recombinant human EPO (rHuEPO) can protect against perinatal HI brain injury via an antiapoptotic mechanism. Methods: The left carotid artery was ligated in 7-day-old Sprague-Dawley (SD) rat pups ($in$ $vivo$ model). The animals were divided into 6 groups: normoxia control (NC), normoxia sham-operated (NS), hypoxia only (H), hypoxia+vehicle (HV), hypoxia+rHuEPO before a hypoxic insult (HE-B), and hypoxia+rHuEPO after a hypoxic insult (HE-A). Embryonic cortical neuronal cell culture of SD rats at 18 days gestation ($in$ $vitro$ model) was performed. The cultured cells were divided into 5 groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated groups. Results: In the $in$ $vivo$ model, Bcl-2 expressions in the H and HV groups were lower than those in the NC and NS groups, whereas those in the HE-A and HE-B groups were greater than those of the H and HV groups. The expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were in contrast to those of Bcl-2. In the $in$ $vitro$ model, the patterns of Bcl-2, Bax, and caspase-3 expression and Bax/Bcl-2 ratio were similar to the results obtained in the in vivo model. Conclusion: rHuEPO exerts neuroprotective effect against perinatal HI brain injury via an antiapoptotic mechanism.

Keywords

References

  1. Liu R, Suzuki A, Guo Z, Mizuno Y, Urabe T. Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro . J Neurochem 2006;96:1101-10. https://doi.org/10.1111/j.1471-4159.2005.03597.x
  2. Dame C, Juul S, Christensen RD. The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol Neonate 2001;79:228-35. https://doi.org/10.1159/000047097
  3. Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C, et al. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 1995;92:3717-20. https://doi.org/10.1073/pnas.92.9.3717
  4. Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Hehn V, et al. Erythropoietin gene expression in human monkey and murine brain. Eur J Neurosci 1996;8:666-76. https://doi.org/10.1111/j.1460-9568.1996.tb01252.x
  5. Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 2001;7:56-64 https://doi.org/10.1002/1098-2779(200102)7:1<56::AID-MRDD1008>3.0.CO;2-A
  6. Chong ZZ, Kang JQ, Maiese K. Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. J Cereb Blood Flow Metab 2002;22:503-14. https://doi.org/10.1097/00004647-200205000-00001
  7. Vairano M, Russo CD, Pozzoli G, Battaglia A, Scambia G, Tringali G, et al. Erythropoietin exerts antiapoptotic effects on rat microglial cells in vitro . Eur J Neurosci 2002;16:584-92. https://doi.org/10.1046/j.1460-9568.2002.02125.x
  8. Wen TC, Sadamoto Y, Tanaka J, Zhu PX, Nakata K, Ma YJ, et al. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by upregulating Bcl-xL expression. J Neurosci Res 2002;67:795-803. https://doi.org/10.1002/jnr.10166
  9. Yamasaki M, Mishima HK, Yamashita H, Kashiwagi K, Murata K, Minamoto A, et al. Neuroprotective effects of erythropoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells. Brain Res 2005;1050:15-26. https://doi.org/10.1016/j.brainres.2005.05.037
  10. Emir M, Ozisik K, Cagli K, Misirlioglu M, Ozisik P, Iscan Z, et al. Effect of erythropoietin on bcl-2 gene expression in rat cardiac myocytes after traumatic brain injury. Transplant Proc 2004;36:2935-8. https://doi.org/10.1016/j.transproceed.2004.11.101
  11. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 1998;95:4635-40. https://doi.org/10.1073/pnas.95.8.4635
  12. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-41. https://doi.org/10.1002/ana.410090206
  13. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997;71:143-55. https://doi.org/10.1016/S0165-0270(96)00136-7
  14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  15. Vannucci RC and Perlman JM. Interventions for perinatal hypoxicischemic encephalopathy. Pediatrics 1997;100:1004-14. https://doi.org/10.1542/peds.100.6.1004
  16. Anderson P, Doyle LW; Victorian Infant Collaborative Study Group. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003;289:3264-72. https://doi.org/10.1001/jama.289.24.3264
  17. Feng Y, Fratkin JD, LeBlanc MH. Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats. Eur J Pharmacol 2004;484:65-74. https://doi.org/10.1016/j.ejphar.2003.10.048
  18. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992;72:449-89. https://doi.org/10.1152/physrev.1992.72.2.449
  19. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001;98:4044-9. https://doi.org/10.1073/pnas.051606598
  20. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 1999;19:643-51. https://doi.org/10.1097/00004647-199906000-00007
  21. Spandou E, Soubasi V, Papoutsopoulou S, Karkavelas G, Simeonidou C, Kaiki-Astara A, et al. Erythropoietin prevents hypoxia/ischemia-induced DNA fragmentation in an experimental model of perinatal asphyxia. Neurosci Lett 2004;366:24-8. https://doi.org/10.1016/j.neulet.2004.05.032
  22. Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain, evidence from an in vitro model. J Neurosci 2002;22:10291-301.
  23. Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, et al. Erythropoietin protects the developing brain against N-methyl-daspartate receptor antagonist neurotoxicity. Neurobiol Dis 2004;15:177- 87. https://doi.org/10.1016/j.nbd.2003.10.006
  24. Morishita E, Masuda S, Nagao M, Tasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamateinduced neuronal death. Neuroscience 1997;76:105-16.
  25. Sinor AD and Greenberg DA. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci Lett 2000;290:213-5. https://doi.org/10.1016/S0304-3940(00)01361-6
  26. Brines M and Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005;6:484-94. https://doi.org/10.1038/nrn1687
  27. Grasso G, Sfacteria A, Cerami A, Brines M. Erythropoietin as a tissueprotective cytokine in brain injury: what do we know and where do we go? Neuroscientist 2004;10:93-8. https://doi.org/10.1177/1073858403259187
  28. Ghezzi P and Brines M. Erythropoietin as an antiapoptotic, tissueprotective cytokine. Cell Death Differ 2004;11:S37-44. https://doi.org/10.1038/sj.cdd.4401450
  29. Juul SE, Yachnis AT, Rojiani AM, Christensen RD. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 1999;2:148-58. https://doi.org/10.1007/s100249900103
  30. Yu X, Shacka JJ, Eels JB, Suarez-Quinan C, Przygodski RM, Beleslin- Cokic B, et al. Erythropoietin receptor signalling is required for normal brain development. Development 2002;129:505-16.
  31. Markianos M, Kosmidis ML, Sfagos C. Reductions in plasma prolactin during acute erythropoietin administration. Neuro Endocrinol Lett 2006;27:355-8.
  32. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004;35:1732-7. https://doi.org/10.1161/01.STR.0000132196.49028.a4
  33. Ribatti D, Vacca A, Roccaro AM, Crivellato E, Presta M. Erythropoietin as an angiogenic factor. Eur J Clin Invest 2003;33:891-6. https://doi.org/10.1046/j.1365-2362.2003.01245.x
  34. Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res 2002;44:391-403. https://doi.org/10.1016/S0168-0102(02)00161-X
  35. Chong ZZ, Lin SH, Kang JQ, Maiese K. Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8. J Neurosci Res 2003;71:659-69. https://doi.org/10.1002/jnr.10528
  36. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003;198:971-5. https://doi.org/10.1084/jem.20021067
  37. Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y. Effects of erythropoietin on neuronal activity. J Neurochem 1999;72:2565-72.
  38. Kawakami M, Sekiguchi M, Sato K, Kozaki S, Takahashi M. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 2001;276:39469-75. https://doi.org/10.1074/jbc.M105832200
  39. Pulera MR, Adams LM, Liu H, Santos DG, Nishimura RN, Yang F, et al. Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia. Stroke 1998;29:2622-30. https://doi.org/10.1161/01.STR.29.12.2622
  40. Carlini RG, Alonzo EJ, Dominguez J, Blanca I, Weisinger JR, Rothstein M, et al. Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int 1999;55:546-53. https://doi.org/10.1046/j.1523-1755.1999.00266.x

Cited by

  1. Effect of β-sodium aescinate on hypoxia-inducible factor-1α expression in rat brain cortex after cardiopulmonary resuscitation vol.4, pp.1, 2010, https://doi.org/10.5847/wjem.j.issn.1920-8642.2013.01.012
  2. Multi-Modal Assessment of Long-Term Erythropoietin Treatment after Neonatal Hypoxic-Ischemic Injury in Rat Brain vol.9, pp.4, 2010, https://doi.org/10.1371/journal.pone.0095643
  3. Growth Factors for the Treatment of Ischemic Brain Injury (Growth Factor Treatment) vol.5, pp.2, 2015, https://doi.org/10.3390/brainsci5020165
  4. Effect of erythropoietin combined with hypothermia on serum tau protein levels and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy vol.12, pp.10, 2010, https://doi.org/10.4103/1673-5374.217338
  5. Effect of erythropoietin on Fas/FasL expression in brain tissues of neonatal rats with hypoxic-ischemic brain damage vol.30, pp.4, 2010, https://doi.org/10.1097/wnr.0000000000001194