DOI QR코드

DOI QR Code

Genetics of kidney development: pathogenesis of renal anomalies

  • Hahn, Hye-Won (Department of Pediatrics, Eulji University School of Medicine)
  • Received : 2010.05.22
  • Accepted : 2010.06.14
  • Published : 2010.07.15

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) account for more than 50% of abdominal masses found in neonates and involve about 0.5% of all pregnancies. CAKUT has a major role in renal failure, and increasing evidence suggests that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adulthood. To understand the pathogenesis of human renal anomalies, understanding the development of kidney is important. Diverse anomalies of the kidney corresponding to defects at a particular stage of development have been documented recently; however, more research is required to understand the molecular networks underlying kidney development, and such an investigation will provide a clue to the therapeutic intervention for CAKUT.

Keywords

References

  1. Scott JE, Renwick M. Antenatal diagnosis of congenital abnormalities in the urinary tract. Results from the Northern Region Fetal Abnormality Survey. Br J Urol 1988;62:295-300. https://doi.org/10.1111/j.1464-410X.1988.tb04351.x
  2. Neild GH. What do we know about chronic renal failure in young adults? I. Primary renal disease. Pediatr Nephrol 2009;24:1913-9. https://doi.org/10.1007/s00467-008-1108-3
  3. Neild GH. What do we know about chronic renal failure in young adults? II. Adult outcome of pediatric renal disease. Pediatr Nephrol 2009;24:1921-8. https://doi.org/10.1007/s00467-008-1107-4
  4. Schedl A. Renal abnormalities and their developmental origin. Nat Rev Genet 2007;8:791-802.
  5. Woolf AS, Price KL, Scambler PJ, Winyard PJ. Evolving concepts in human renal dysplasia. J Am Soc Nephrol 2004;15:998-1007. https://doi.org/10.1097/01.ASN.0000113778.06598.6F
  6. Ichikawa I, Kuwayama F, Pope JCt, Stephens FD, Miyazaki Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 2002;61:889-98. https://doi.org/10.1046/j.1523-1755.2002.00188.x
  7. Winyard P, Chitty LS. Dysplastic kidneys. Semin Fetal Neonatal Med 2008;13:142-51. https://doi.org/10.1016/j.siny.2007.10.009
  8. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioessays 2006;28:117-27. https://doi.org/10.1002/bies.20357
  9. Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol 2006;22:509-29. https://doi.org/10.1146/annurev.cellbio.22.010305.104340
  10. Shakya R, Watanabe T, Costantini F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 2005;8:65-74. https://doi.org/10.1016/j.devcel.2004.11.008
  11. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 1998;21:53-62. https://doi.org/10.1016/S0896-6273(00)80514-0
  12. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 2004;101:8090-5. https://doi.org/10.1073/pnas.0308475101
  13. Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 2007;134:2397-405. https://doi.org/10.1242/dev.02861
  14. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 2008;19:891-903. https://doi.org/10.1681/ASN.2006111282
  15. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, et al. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 2006;299:466-77. https://doi.org/10.1016/j.ydbio.2006.08.051
  16. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 2004;6:709-17. https://doi.org/10.1016/S1534-5807(04)00108-X
  17. Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007;80:616-32. https://doi.org/10.1086/512735
  18. Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 2008;19:825-31. https://doi.org/10.1681/ASN.2007060692
  19. Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol 2010;21:113-23. https://doi.org/10.1681/ASN.2009060624
  20. Murawski IJ, Gupta IR. Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 2006;69:105-17. https://doi.org/10.1111/j.1399-0004.2005.00562.x
  21. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med 2003;348:101-8. https://doi.org/10.1056/NEJMoa020549
  22. Brenner BM, Mackenzie HS. Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 1997;63:S124-7.
  23. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 2003;130:3175-85. https://doi.org/10.1242/dev.00520
  24. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995;9:358-64. https://doi.org/10.1038/ng0495-358
  25. Hahn H, Cho YM, Park YS, You HW, Cheong HI. Two cases of isolated diffuse mesangial sclerosis with WT1 mutations. J Korean Med Sci 2006;21:160-4. https://doi.org/10.3346/jkms.2006.21.1.160
  26. Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 1998;19:47-50. https://doi.org/10.1038/ng0598-47
  27. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999;3:1-10. https://doi.org/10.1016/S1097-2765(00)80169-0
  28. Jain S, Encinas M, Johnson EM Jr., Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 2006;20:321-33. https://doi.org/10.1101/gad.1387206
  29. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell. 1995;81:289-98. https://doi.org/10.1016/0092-8674(95)90339-9
  30. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996;272:1339-42. https://doi.org/10.1126/science.272.5266.1339
  31. Wilson PD. Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 2004;36:1868-73. https://doi.org/10.1016/j.biocel.2004.03.012
  32. Hildebrandt F, Attanasio M, Otto E. Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 2009;20:23-35. https://doi.org/10.1681/ASN.2008050456
  33. Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 2005;6:928-40.
  34. Watnick T, Germino G. From cilia to cyst. Nat Genet 2003;34:355-6. https://doi.org/10.1038/ng0803-355
  35. Ruano-Gil D, Coca-Payeras A, Tejedo-Mateu A. Obstruction and normal recanalization of the ureter in the human embryo. Its relation to congenital ureteric obstruction. Eur Urol 1975;1:287-93.
  36. Yang SP, Woolf AS, Quinn F, Winyard PJ. Deregulation of renal transforming growth factor-beta1 after experimental short-term ureteric obstruction in fetal sheep. Am J Pathol 2001;159:109-17. https://doi.org/10.1016/S0002-9440(10)61678-1
  37. Belk RA, Thomas DF, Mueller RF, Godbole P, Markham AF, Weston MJ. A family study and the natural history of prenatally detected unilateral multicystic dysplastic kidney. J Urol 2002;167:666-9. https://doi.org/10.1016/S0022-5347(01)69120-1
  38. Poucell-Hatton S, Huang M, Bannykh S, Benirschke K, Masliah E. Fetal obstructive uropathy: patterns of renal pathology. Pediatr Dev Pathol 2000;3:223-31. https://doi.org/10.1007/s100249910029
  39. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997;17:384-5. https://doi.org/10.1038/ng1297-384
  40. Kolatsi-Joannou M, Bingham C, Ellard S, Bulman MP, Allen LI, Hattersley AT, et al. Hepatocyte nuclear factor-1beta: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol 2001;12:2175-80.
  41. Ma Z, Gong Y, Patel V, Karner CM, Fischer E, Hiesberger T, et al. Mutations of HNF-1beta inhibit epithelial morphogenesis through dysregulation of SOCS-3. Proc Natl Acad Sci USA 2007;104:20386-91. https://doi.org/10.1073/pnas.0705957104
  42. Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Williams-Simons L, Westphal H. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 1993;362:65-7. https://doi.org/10.1038/362065a0
  43. Jenkins D, Woolf AS. Uroplakins: new molecular players in the biology of urinary tract malformations. Kidney Int 2007;71:195-200. https://doi.org/10.1038/sj.ki.5002053

Cited by

  1. Genetic link between renal birth defects and congenital heart disease vol.7, pp.1, 2016, https://doi.org/10.1038/ncomms11103