DOI QR코드

DOI QR Code

Clinical significance of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 and 2 in Kawasaki disease

가와사끼병에서 Matrix metalloproteinase 9과 Tissue inhibitor of metalloproteinase 1, 2의 임상적 중요성

  • Yun, Ki-Wook (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Yun, Sin-Weon (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Lee, Jung-Ju (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Chae, Soo-Ahn (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Lim, In-Seok (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Choi, Eung-Sang (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Yoo, Byoung-Hoon (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Lee, Mi-Kyung (Department of Laboratory Medicine, College of Medicine, Chung-Ang University)
  • 윤기욱 (중앙대학교 의과대학 소아과학교실) ;
  • 윤신원 (중앙대학교 의과대학 소아과학교실) ;
  • 이정주 (중앙대학교 의과대학 소아과학교실) ;
  • 채수안 (중앙대학교 의과대학 소아과학교실) ;
  • 임인석 (중앙대학교 의과대학 소아과학교실) ;
  • 최응상 (중앙대학교 의과대학 소아과학교실) ;
  • 유병훈 (중앙대학교 의과대학 소아과학교실) ;
  • 이미경 (중앙대학교 의과대학 진단검사의학과)
  • Received : 2010.01.11
  • Accepted : 2010.03.02
  • Published : 2010.04.15

Abstract

Purpose : Kawasaki disease (KD) is a systemic vasculitis, a leading cause of pediatric acquired heart disease. Histopathological findings of coronary artery lesion (CAL) in KD indicate destruction of the coronary artery wall with diffuse vasculitis. Matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) might play central roles in this process. Special attention to MMP-9 has recently been emerging. This study was performed to investigate the clinical significance of MMP-9 and its inhibitors, TIMP-1 and TIMP-2, in KD. Methods : We compared 47 KD patients with 14 febrile controls. Serum MMP-9 and TIMP-1, TIMP-2 were measured by ELISA and compared according to clinical stages and coronary involvement. Results : In acute stage, MMP-9 and TIMP-1 were significantly higher, whereas TIMP-2 was lower, in KD than those in febrile controls ($P$<0.05). The elevated MMP-9 levels in acute phase significantly decreased during the subacute and convalescent phases ($P$<0.05). During acute phase, the MMP-9, TIMP-1, and MMP-9/TIMP-2 levels in the CAL group were lower than those in the non-CAL group, but they increased significantly in the subacute phase ($P$<0.05). MMP-9 has a positive correlation with TIMP-1 in the acute and subacute phases, and negative correlation with TIMP-2 in the subacute and convalescent phases ($P$<0.05). Conclusion : These results suggest that MMP-9, TIMP-1, and the imbalance in MMP-9 and TIMP-2 might play important roles on the pathophysiology of KD and especially on the development of CAL. However, further larger studies are needed.

목 적: 가와사끼병은 급성 전신성 미세혈관염으로서, 소아의 후천성 심질환의 가장 흔한 원인이다. 가와사끼병의 관상동맥병변에 대한 조직병리학적 소견은 미만성 혈관염에 의한 관상동맥벽의 파괴를 시사하는데, matrix metalloproteinase (MMP)와 그 내인성 억제인자인 tissue inhibitor of metalloproteinases (TIMP)가 이러한 과정에 주요한 역할을 할 것으로 생각되고 있으며, 그 중에도 MMP-9이 최근 가장 주목을 받고 있다. 따라서 본 연구에서는, 한국의 가와사끼병 환아들에서 MMP-9과 그 억제인자들인 TIMP-1, TIMP-2가 갖는 임상적 중요성을 평가하고자 하였다. 방 법: 가와사끼병 환아 47명을 연구대상으로 하였고, 급성열성 세균감염 환아 14명을 대조군으로 하였다. 혈중 MMP-9, TIMP-1, TIMP-2의 농도를 kit를 통한 효소 면역법을 이용하여 측정하였고, 각 임상 단계 및 관상동맥병변의 유무에 따라 비교분석하였다. 결 과: 급성기에 MMP-9과 TIMP-1은 가와사끼군에서 대조군에 비해 유의하게 높았고, TIMP-2는 오히려 낮았다($P$<0.05). 급성기에 증가한 MMP-9은 아급성기와 회복기에 유의하게 감소하였다($P$<0.05). 관상동맥 확장군과 비확장군의 비교에서는, 확장군에서 급성기 MMP-9과 TIMP-1, MMP-9/TIMP-2가 낮았으며, 아급성기로 가면서 통계적으로 유의하게 증가하였다가 다시 회복기로 가면서 감소하는 양상을 보였다($P$<0.05). MMP-9은 급성기와 아급성기에 TIMP-1과 통계적으로 유의한 양의 상관관계를 보였고, TIMP-2와는 아급성기와 회복기에 음의 상관관계를 보였다($P$<0.05). 결 론: 이러한 결과들은 MMP-9과 TIMP-1의 증가, 그리고 MMP-9과 TIMP-2의 불균형이 가와사끼병, 특히 그 관상동맥병변의 병태생리에 핵심적인 역할을 한다는 사실을 시사한다 하겠다. 더 종합적이고 심도 깊은 연구를 위해서 좀 더 많은 대상자를 포함하는 큰 규모의 연구들이 향후 이루어져야 할 것이다.

Keywords

References

  1. Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children: Clinical observations of 50 cases (in Japanese). Arerugi 1967;16:178-222.
  2. Wood LE, Tulloh RM. Kawasaki disease in children. Heart 2009;95;787-92. https://doi.org/10.1136/hrt.2008.143669
  3. Johnson LL, Dyer R, Hupe DJ. Matrix metalloproteinases. Curr opin Chem Biol 1998;2:466-71. https://doi.org/10.1016/S1367-5931(98)80122-1
  4. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 2009;27:5287-97. https://doi.org/10.1200/JCO.2009.23.5556
  5. Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999;99:1788-94. https://doi.org/10.1161/01.CIR.99.14.1788
  6. Lee YH, Kim TY, Hong YM. Metalloproteinase-3 genotype as a predictor of cardiovascular risk in hypertensive adolescents. Korean Circ J 2009;39:328-4. https://doi.org/10.4070/kcj.2009.39.8.328
  7. Li YY, Feldman RM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998;98:1728-34. https://doi.org/10.1161/01.CIR.98.17.1728
  8. Herron GS, Unemori E, Wong M, Rapp JH, Hibbs MH, Stoney RJ. Connective tissue proteinases and inhibitors in abdominal aortic aneurysms involvement of the vasa vasorum in the pathogenesis of aortic aneurysms. Arterioscler Thromb 1991;11:1667-77. https://doi.org/10.1161/01.ATV.11.6.1667
  9. Hovsepian DM, Ziporin SJ, Sakurai MK, Lee JK, Curci JA, Thomson RW. Elevated plasma levels of matrix metalloproteinase- 9 in patients with abdominal aortic aneurysms: a circulating marker of degenerative aneurysm disease. J Vasc Interv Radiol 2000;11:1345-52. https://doi.org/10.1016/S1051-0443(07)61315-3
  10. Matsuyama T. Tissue inhibitor of metalloproteinases-1 and matrix metalloproteinase-3 in Japanese healthy children and in Kawasaki disease and their clinical usefulness in juvenile rheumatoid arthritis. Pediatr Int 1999;41:239-45. https://doi.org/10.1046/j.1442-200x.1999.01061.x
  11. Senzaki H, Masutani S, Kobayashi J, Kobayashi T, Nakano H, Nagasaka H, et al. Circulating matrix metalloproteinases and their inhibitors in patients with Kawasaki disease. Circulation 2001;104;860-3. https://doi.org/10.1161/hc3301.095286
  12. Gavin PJ, Crawford SE, Shulman ST, Garcia FL, Rowley AH. Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute Kawasaki disease. Arterioscler Thromb Vasc Biol 2003;23:576-81. https://doi.org/10.1161/01.ATV.0000065385.47152.FD
  13. Zhang Y, McCluskey K, Fujii K, Wahl LM. Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte- macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms. J Immunol 1998;161:3071-6.
  14. Pugin J, Widmer MC, Kossodo S, liang CM, Preas HL Il, Suffredini AF. Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am J Respir Cell Mol Biol 1999;20:458-64. https://doi.org/10.1165/ajrcmb.20.3.3311
  15. Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 2005;25:372.
  16. Tan J, Hua Q, Xing X, Wen J, Liu R, Yang Z. Impact of the metalloproteinase-9/tissue inhibitor of metalloproteinase-1 system on large arterial stiffness in patients with essential hypertesion. Hypertens Res 2007;30:959-63. https://doi.org/10.1291/hypres.30.959
  17. Lau AC, Duong TT, Ito S, Yeung RS. Matrix metalloproteinase 9 activity leads to elastin breakdown in an animal model of Kawasaki disease. Arthritis Rheum 2008;58:854-63. https://doi.org/10.1002/art.23225
  18. Lau AC, Duong TT, Ito S, Wilson GJ, Yeung RS. Inhibition of matrix metalloproteinase-9 activity improves coronary outcome in an animal model of Kawasaki disease. Clin Exp Immunol 2009;157:300-9. https://doi.org/10.1111/j.1365-2249.2009.03949.x
  19. Lau AC, Duong TT, Ito S, Yeung RS. Intravenous immunoglobulin and salicylate differentially modulate pathogenic processes leading to vascular damage in a model of Kawasaki disease. Arthritis Rheum 2009;60:2131-41. https://doi.org/10.1002/art.24660
  20. Peng Q, Zhou TF, Chen CH, Jua YM, Liu HM, Hong H, et al. Clinical value of serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 for the prediction and early diagnosis of coronary artery lesion in patients with Kawasaki disease. Zhonghua Er Ke Za Zhi 2005;43:676-80.
  21. Cho AR, Hong YM. Matrix metalloproteinases, tissue inhibitors and cytokines in patients with Kawasaki disease. Korean J Pediatr 2004;47:656-64.
  22. Takeshita S, Tokutomi T, Kawase H, Nakatani K, Tsujimoto H, Kawamura Y, et al. Elevated serum levels of matrix metalloproteinase- 9 (MMP-9) in Kawasaki disease. Clin Exp Immunol 2001;125:340-4. https://doi.org/10.1046/j.1365-2249.2001.01608.x
  23. Chua PK, Melish ME, Yu Q, Yanagihara R, Yamamoto KS, Nerurkar VR. Elevated levels of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 during acute phase of Kawasaki disease. Clin Dign Lab Immunol 2003;10:308-14.
  24. American Heart Association, Inc. Adapted in part from the Japan Kawasaki Disease Research Committee. Circulation 2001;103:335-6. https://doi.org/10.1161/01.CIR.103.2.335
  25. Rowley AH, Gonzalez-Crussi F, Gidding SS, Duffy CE, Shulman ST. Incomplete Kawasaki disease with coronary artery involvement. J Pediatr 1987;110:409-13. https://doi.org/10.1016/S0022-3476(87)80503-6
  26. Kurotobi S, Nagai T, Kawakami N, Sano T. Coronary diameter in normal infants, children and patients with Kawasaki disease. Pediatr Int 2002;44:1-4. https://doi.org/10.1046/j.1442-200X.2002.01508.x
  27. Holman RC, Curns AT, Belay ED, Steiner CA, Schonberger LB. Kawasaki syndrome hospitalizations in the United States, 1997 and 2000. Pediatrics 2003;112:495-501. https://doi.org/10.1542/peds.112.3.495
  28. Park YW. Epidemiology of Kawasaki disease in Korea. Korean J Pediatr 2008; 51:452-6. https://doi.org/10.3345/kjp.2008.51.5.452
  29. Tsuchida S, Yamanaka T, Tsuchida R, Nakamura Y, Yashiro M, Yanagawa H. Epidemiology of infant Kawasaki disease with a report of the youngest neonatal case ever reported in Japan. Acta Pediatr 1996;85:995-7. https://doi.org/10.1111/j.1651-2227.1996.tb14201.x
  30. Cho EY, Eun BW, Kim NH, Lee JN, Choi EH, Lee HJ, et al. Association between Kawasaki disease and acute respiratory viral infections. Korean J Pediatr 2009;52:1241-8. https://doi.org/10.3345/kjp.2009.52.11.1241
  31. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 2008;40:35-42. https://doi.org/10.1038/ng.2007.59
  32. Yang JH, Park MH, Shim JY, Jung HL, Park MS, Keum DH. Increased matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in the cerebrospinal fluid from children with aseptic meningitis. J Korean Pediatr Soc 2003;46:548-53.
  33. Medley TL, Cole TJ, Dart AM, Gatzka CD, Kingwell BA. Matrix metalloproteinase-9 genotype influences large artery stiffness through effects on aortic gene and protein expression. Arterioscler Thromb Vasc Biol 2004;24:1479-84. https://doi.org/10.1161/01.ATV.0000135656.49158.95
  34. Lin J, Davis HB, Dai Q, Chou YM, Craig T, Hinojosa- Laborde C, et al. Effects of early and late chronic pressure overload on extracellular matrix remodeling. Hypertens Res 2008;31:1225-31. https://doi.org/10.1291/hypres.31.1225