References
- Nevison, C., "Review of the IPCC Methodology for Estimating Nitrous Oxide Emissions Associated with Agricultural Leaching and Runoff," Chemosphere-Global Change Sci., 2, 493-500 (2000). https://doi.org/10.1016/S1465-9972(00)00013-1
-
Scott, M. J., Sands, R. D., Rosenberg, N. J., and Izaurralde, R. C., "Future
$N_2O$ from US Agriculture: Projecting Effects of Changing Land Use, Agricultural Technology, and Climate on$N_2O$ Emissions," Global Environ. Change, 12, 105-115 (2002). https://doi.org/10.1016/S0959-3780(02)00005-5 -
Yates, M., Martin, J. A., Martin-Luengo, A., Suarez, S., and Blanco, J., "
$N_2O$ Formation in The Ammonia Oxidation and in the SCR Process with$V_2O_5-WO_3$ Catalysts," Catal. Today, 107-108, 120-125 (2005). https://doi.org/10.1016/j.cattod.2005.07.015 - Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, A., "Heterogeneous Catalytic Decomposition of Nitrous Oxide," Appl. Catal. B: Environ., 9, 25-64 (1996). https://doi.org/10.1016/0926-3373(96)90072-7
- Drago, R., Jurczyk, K, and Kob, N., "Catalyzed Decomposition of N2O on Metal Oxide Supports," Appl. Catal. B: Environ., 13, 69-79 (1997). https://doi.org/10.1016/S0926-3373(96)00088-4
- Kannan, S., "Decomposition of Nitrous Oxide over the Catalysts Derived from Hydrotalcite-like Compounds," Appl. Clay Sci., 13, 347-362 (1998). https://doi.org/10.1016/S0169-1317(98)00032-5
-
Dann, T. W., Schulz, K. H., Mann, M., and Collings, M., "Supported Rhodium Catalysts for Nitrous Oxide Decomposition in the Presence of NO,
$CO_2,\;SO_2$ and CO," Appl. Catal. B: Environ., 6, 1-10 (1995). https://doi.org/10.1016/0926-3373(95)00006-2 - Tichit, D., Medina, F., Coq, B., and Dutartre, R., "Activation under Oxidizing and Reducing Atmospheres of Ni-containing Layered Double Hydroxides," Appl. Catal. A: Gen., 159, 241-258 (1997). https://doi.org/10.1016/S0926-860X(97)00085-9
-
Armor, J. N., Braymer, T. A., Farris, T. S., Li, Y., Petrocelli, F. P., Weist, E. L., Kannan, S., and Swamy, C. S., "Calcined Hydrotalcites for the Catalytic Decomposition of
$N_2O$ in Simulated Process Streams," Appl. Catal. B: Environ., 7, 397- 406 (1996). https://doi.org/10.1016/0926-3373(95)00048-8 -
Chang, K. S., Song, H., Park, Y.-S., and Woo, J.-W., "Analysis of
$N_2O$ Decomposition over Fixed Bed Mixed Metal Oxide Catalysts Made from Hydrotalcite-type Precursors," Appl. Catal. A: Gen., 273, 223-231 (2004). https://doi.org/10.1016/j.apcata.2004.06.036 - Kannan, S., and Swamy, C., "Catalytic Decomposition of Nitrous Oxide on in situ Generated Thermally Calcined Hydrotalcites," Appl. Catal. B: Environ., 3, 109-116 (1994). https://doi.org/10.1016/0926-3373(93)E0036-B
- Yoshida, M., Nobukawa, T., Ito, S., Tomishige, K., and Kunimori, K., "Structure Sensitivity of Ion-exchanged Fe-MFI in the Catalytic Reduction of Nitrous Oxide by Methane under an Excess Oxygen Atmosphere," J. Catal., 223, 454-464 (2004). https://doi.org/10.1016/j.jcat.2004.02.002
-
Van den Brink, R. W., Booneveld, S., Pels, J. R., Bakker, D. F, and Verhaak, M.J.F.M., "Catalytic Removal of
$N_2O$ in Model Flue Gases of a Mitric Acid Plant Using a Promoted Fe Zeolite," Appl. Catal. B: Environ., 32, 73-81 (2001). https://doi.org/10.1016/S0926-3373(00)00294-0 -
Nobukawa, T., Yoshida, M., Okumura, K., Tomishige, K., and Kunimori K., "Effect of Reductions in
$N_2O$ Reduction over Fe-MFI Catalysts," J. Catal., 229(2), 374-388 (2005). https://doi.org/10.1016/j.jcat.2004.11.009 - Yamada, K., Kondo, S., and Segawa, K., "Selective Catalytic Reduction of Nitrous Oxide Over Fe-ZSM-5: the Effect of Ion- Exchange Level," Micropor. Mesopor. Mater., 35-36, 227-234 (2000). https://doi.org/10.1016/S1387-1811(99)00223-1
- Satsuma, A., Maeshima, H., Watanabe, K., Suzuki, K., and Hattori, T., "Effects of Methane and Oxygen on Decomposition of Nitrous Oxide over Metal Oxide Catalysts," Catal. Today, 63, 347-353 (2000). https://doi.org/10.1016/S0920-5861(00)00478-8
-
Nobukawa. T., Yoshida. M., Kameoka. S., Ito. S., Tomishige. K., and Kunimori. K., "Selective Catalytic Reduction of
$N_2O\;with\;CH_4\;and\;N_2O$ Decomposition over Fe-zeolite Catalysts," Stud. Surf. Sci. Catal., 154(3), 2514-2521 (2004). -
Delahay, G., Mauvezin, M., Guzman-Vargas, A., and Coq, B., "Effect of the Reductant Nature on the Catalytic Removal of
$N_2O$ on Fe-zeolite-b Catalysts," Catal. Commun., 3, 385-389 (2002). https://doi.org/10.1016/S1566-7367(02)00157-7 -
Debbagh Bouttarbouch, M. N., Garcia Cortes, J. M., Soussi El Begrani, M., Salinas Martinez de Lecea, C., and Perez-Ramirez, J., "Catalytic Conversion of
$N_2O$ over FeZSM-5 Zeolite in the Presence of CO and NO," Appl. Catal. B: Environ., 54, 115-123 (2004). https://doi.org/10.1016/j.apcatb.2004.06.013 -
Perez-Ramirez, J., Santhosh Kumar, M., and Bruckner, A., "Reduction of
$N_2O$ with CO over FeMFI Zeolites: Influence of the Preparation Method on the Iron Species and Catalytic Behavior," J. Catal., 223, 13-27 (2004). https://doi.org/10.1016/j.jcat.2004.01.007 -
Yu, Q., Liu, L., Dong, L., Li, D., Liu, B., Gao, F., Sun, K., Dong, L., and Chen, Y., "Effects of Ce/Zr Ratio on the Reducibility, Adsorption and Catalytic Activity of
$CuO/Ce_{x}Zr_{1}−_{.x}O_{2}/-Al_{2}O_{3}$ Catalysts for NO Reduction by CO", Appl. Catal. B: Environ., 96, 350-360 (2010). https://doi.org/10.1016/j.apcatb.2010.02.032 -
Granger, P., Dujardin, C., Paul, J.-F., and Leclercq, G., "An Overview of Kinetic and Spectroscopic Investigations on Three-Way Catalysts: Mechanistic Aspects of the CO+NO and
$CO+N_2O$ Reactions," J. Mol. Catal. A: Chem., 228, 241-253 (2005). https://doi.org/10.1016/j.molcata.2004.09.081 - Kaspar, J., Fornasiero, P., and Graziani, M., "Use of CeO2-based Oxides in the Three-way Catalysis," Catal. Today, 50, 285-298 (1999). https://doi.org/10.1016/S0920-5861(98)00510-0
- Imamura, S., Shono, M., Okamoto, N., Hamada, A. and Ishida, S., "Effect of Cerium on the Mobility of Oxygen on Manganese Oxides," Appl. Catal. A: Gen., 142, 279 (1996). https://doi.org/10.1016/0926-860X(96)00095-6
- Moroz, T., Razvorotneva, L., Grigorieva, T., and Mazurov, M., "Formation of Spinel from Hydrotalcite-like Minerals and Destruction of Chromite Implanted by Inorganic Salts," Appl. Clay Sci., 18, 29-36 (2001). https://doi.org/10.1016/S0169-1317(00)00027-2
- Prevot, V., Forano, C., and Besse, J. P., "Hybrid Derivatives of Layered Double Hydroxides," Appl. Clay Sci., 18, 3-15 (2001). https://doi.org/10.1016/S0169-1317(00)00025-9
-
Chang, K. S., and You, K.-C., "The Effects of
$SO_2\;and\;NH_3\;on\;the\;N_2O$ Reduction with CO over MMO Catalyst," J. Korean Ind. Eng. Chem., 20, 653-657 (2009). - Chang, K. S., and Peng, X., "NO Presence Effects on the Reduction of N2O by CO over Al-Pd-Co oxide catalyst", J. Ind. Eng. Chem., 16(3), 455-460 (2010). https://doi.org/10.1016/j.jiec.2010.01.046
- Dandl, H. and Emig, G., "Mechanistic Approach for the Kinetics of the Decomposition of Nitrous Oxide over Calcined Hydrotalcites," Appl. Catal. A: Gen., 168, 261-268 (1998). https://doi.org/10.1016/S0926-860X(97)00357-8
-
Chang, K. S., Lee, H.-J., Park, Y.-S., and Woo, J.-W., "Enhanced Performances of
$N_2O$ Destruction in the Presence of CO over the Mixed Metal Oxide Catalysts Derived from Hydrotalcite-type Precursors," Appl. Catal. A: Gen., 309, 129-138 (2006). https://doi.org/10.1016/j.apcata.2006.05.007