DOI QR코드

DOI QR Code

Investigation of Relationship between Etch Current and Morphology and Porosity of Porous Silicon

  • 투고 : 2010.12.06
  • 심사 : 2010.12.23
  • 발행 : 2010.12.31

초록

Relationship between etch current and morphology and porosity of porous silicon (PS) has been investigated. The gravimetric method is applied to measured the porosity of PS. As the current density increase, the silicon dissolution rate increases, resulting in a higher porosity and etching rate. The result shows that linear dependence of PS porosity and etching rate as a function of current density. The morphology of porous silicon was investigated by using cold field emission scanning electron micrograph (FE-SEM). The size of pores formed during anodization is predominantly controlled by the current density, with an increase in the pore size corresponding to an increase in the current density.

키워드

참고문헌

  1. A. Uhlir, "Electrolytic shaping of germanium and silicon", J. Bell Syst. Tech., Vol. 35, p. 333, 1956. https://doi.org/10.1002/j.1538-7305.1956.tb02385.x
  2. L. T. Canham, "In situ growth of superconducting YBa [sub 2] Cu [sub 3] O [sub 7-delta] thin films on Si with conducting indium-tin-oxide buffer layers", Appl. Phys. Lett., Vol. 57, p. 1046, 1990. https://doi.org/10.1063/1.103561
  3. A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon", Nature, Vol. 353, p. 335, 1991. https://doi.org/10.1038/353335a0
  4. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, "Raman analysis of light-emitting porous silicon", Appl. Phys. Lett., Vol. 60, p. 2086, 1992. https://doi.org/10.1063/1.107097
  5. C. Delerue, G. Allan, and M. Lannoo, "Theoretical aspects of the luminescence of porous silicon", Phys. Rev., B, Vol.48, p. 11024, 1993. https://doi.org/10.1103/PhysRevB.48.11024
  6. F. Koch, V. Petrova-koch, T. Muschik, A. nikolov, and V. Gavrilenko, "Some perspectives on the luvinescence nechanism viasurface-confined states of porous Si", Mater. Res. Soc. Symp. Proc., Vol. 298, p. 319, 1993. https://doi.org/10.1557/PROC-298-319
  7. E. J. Lee, T. W. Bitner, J. S. Ha, M. J. Shane, and M. J. Sailor, "Light-Induced Reactions of Porous and Single-Crystal Si Surfaces with Carboxylic Acids", J. Am. Chem. Soc., Vol. 118, p. 5375, 1996. https://doi.org/10.1021/ja960777l
  8. J. M. Buriak and M. J. Allen, "Lewis Acid Mediated Functionalization of Porous Silicon with Substituted Alkenes and Alkynes", J. Am. Chem. Soc., Vol. 120, p. 1339, 1998. https://doi.org/10.1021/ja9740125
  9. A. Richter, P. steiner, F. Kozlowski, and W. Lang, "Current induced light emission from a porous silicon device", IEEE Electron Device Lett., Vol. 12, p. 691, 1991. https://doi.org/10.1109/55.116957
  10. K. D. Hirschmann, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits", Nature, Vol. 384, p. 338, 1996. https://doi.org/10.1038/384338a0
  11. C. Mazzoleni and L. Pavesi, "Controlled photon emission in porous silicon microcavities", Appl. Phys. Lett., Vol. 67, p. 2983, 1995. https://doi.org/10.1063/1.114833
  12. G. Smestad, M. Kunst, and C. Vial, "Photovoltaic response in electrochemically prepared photoluminescent porous silicon", Sol. Energy Mater. Sol. Cells, Vol. 26, p. 277, 1992. https://doi.org/10.1016/0927-0248(92)90047-S
  13. J. M. Lauerhaas and M. J. Sailor, "Chemical Modification of the Photoluminescence Quenching of Porous Silicon", Science, Vol. 261, p. 1567, 1993. https://doi.org/10.1126/science.261.5128.1567
  14. H. Sohn, S. Letant , M. J. Sailor, and C. Trogler, "Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer", J. Am. Chem. Soc., Vol. 122, p. 5399, 2000. https://doi.org/10.1021/ja0006200
  15. S. Letant and M. J. Sailor, "Molecular Identification by Time-Resolved Interferometry in a Porous Silicon Film", Adv. Mater., Vol. 13, p. 355, 2001. https://doi.org/10.1002/1521-4095(200103)13:5<355::AID-ADMA355>3.0.CO;2-D
  16. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of Gram Negative Bacteria Using Nanoscale Silicon Microcavities", J. Am. Chem. Soc., Vol. 123, p. 11797, 2001. https://doi.org/10.1021/ja016555r
  17. H. Sohn, R. M. Calhoun, M. J. Sailor, and W. C. Trogler, "Detection of TNT and Picric Acid on Surfaces and in Seawater by Using Photoluminescent Polysiloles", Angew. Chem. Int. Ed., Vol. 40, p. 2104, 2001. https://doi.org/10.1002/1521-3773(20010601)40:11<2104::AID-ANIE2104>3.0.CO;2-#
  18. H. Sohn, M. J. Sailor, D. magde, and W. C. Trogler, "Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles", J. Am. Chem. Soc., Vol. 125, p. 3821, 2003. https://doi.org/10.1021/ja021214e
  19. X, Li, J. L. Coffer, Y. D. Chen, R. F. Pinizzotto, J. Newey, and L. T. Canham, J. Am. Chem. Soc. 120, 11706 (1998). https://doi.org/10.1021/ja9823666
  20. N. Koshida, T. Nakajima, M. Yoshiyama, K. Ueno, T. Nakagawa, and H. Shinoda, "Ultrasound Emission From Porous Silicon: Efficient Thermo-Acoustic Function as a Depleted Nanocrystalline System", Mater. Res. Soc. Symp. Proc., Vol. 536, p. 105, 1999.
  21. T. E. Bell, P. T. J. Gennissen, D. Demunter, and M. Kuhl, "Porous silicon as a sacrificial material : Sacrificial etching papers", J. Micromech. Microeng., Vol. 6, p. 361, 1996. https://doi.org/10.1088/0960-1317/6/4/002
  22. V. G. Zubko, T. L. Smith, and A. N. Witt, "On the physical model of dust around Wolf?Rayet stars", J. Astrophys., Vol. 295, p. 501, 1998.
  23. V. P. Parkhutik, E. Matveeva, R. Perez, and J. Alamo, "Electrical and Optical Properties of Conducting Polymer/Porous Silicon Structures", Mater. Sci. Engn. B, Vol. 69, p. 53, 2000. https://doi.org/10.1016/S0921-5107(99)00279-2
  24. V. P. Bondarenko, Y. V. Bogatirev, J. P. Colinge, L. N. Dolgyi, A. M. Dorofeev, and V. A. Yakovtseva, "Hydrogen-containing chemically active gas medium for controlling carbon content of tungsten-base hard alloys", IEEE. Trans. Nucl. Sci., Vol. 44, p. 1719, 1997. https://doi.org/10.1109/23.633424
  25. V. P. Parkhutik and L. T. Canham, "Porous Silicon as an Educational Vehicle for Introducing Nanotechnology and Interdisciplinary Materials Science", Phys. Stat. Sol. A, Vol. 182, p. 591, 2000. https://doi.org/10.1002/1521-396X(200011)182:1<591::AID-PSSA591>3.0.CO;2-G
  26. A. Halimaoui, "Porous silicon formation by anodisation", in Properties of Porous Silicon, L. Canham, ed., INSPEC, London, UK, pp. 12-22 1997.
  27. V. Lehmann and U. Gasele, "Causes and Prevention of Temperature-Dependent Bubbles in Silicon Wafer Bonding", Appl. Phys. Lett., Vol. 58, p. 856, 1991. https://doi.org/10.1063/1.104512
  28. M. J. Sailor, J. L. Heinrich, and J. M. Lauerhaas, "Semiconductor Nanoclusters", Stud. Surface Sci. Cat., Vol. 103, p. 209, 1996.
  29. R. L. Smith and S. D. Collins, "Renal artery stenosis: prevalence and associated risk factors in patients undergoing routine cardiac catheterization", J. Appl. Phys., Vol. 71, p. 16, 1992.
  30. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, "The structural and luminescence properties of porous silicon", J. Appl. Phys., Vol. 82, p. 909, 1997. https://doi.org/10.1063/1.366536
  31. V. Lehmann, "Electrochemistry of Silicon", Wiley-VCH Verlag, GmbH, 2002.
  32. H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, "Macroporous Silicon Microcavities for Macromolecule Detection", Adv. Funct. Mater., Vol. 15, p. 1851, 2005. https://doi.org/10.1002/adfm.200500218
  33. D. Brumhead, L. T. Canham, D. M. Seekings, and P. J. Tufton, "Gravimetric analysis of pore nucleation and propagation in anodised silicon", Electrochim. Acta., Vol. 38, p. 191, 1993. https://doi.org/10.1016/0013-4686(93)85128-L
  34. W. Theiss, "Dielectric filters made of PS: advanced performance by oxidation and new layer structures", Surf. Sci. Rep., Vol. 29, p. 91, 1997. https://doi.org/10.1016/S0167-5729(96)00012-X