DOI QR코드

DOI QR Code

Photoluminescence of Porous Silicon According to Various Etching Times and Various Applied Current Densities

식각시간 및 식각전류에 따른 다공성 실리콘의 발광 특성에 대한 조사

  • Han, Jungmin (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2010.09.02
  • Accepted : 2010.09.27
  • Published : 2010.09.30

Abstract

Photoluminescence properties and surface morphologies of porous silicon etched with various applied current densities at fixed etching times. FE-SEM image of porous silicon surface indicated that the porous silicon prepared at currents below 200 mA exhibited very bright red photoluminescence properties. As the applied current densities increased, the photoluminescence efficiencies of porous silicon prepared at applied current densities above 300 mA decreased, and displayed the cracked surface on porous silicon. This cracked surface start to collapsed to give cracked domains.

Keywords

References

  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl.Phys.Lett., Vol. 57, p. 1046, 1990. https://doi.org/10.1063/1.103561
  2. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits", Nature, Vol. 384, p. 338, 1996. https://doi.org/10.1038/384338a0
  3. H. Sohn, S. Letant, M. J. Sailor, and W. C. Trogler, "Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer", J. Am. Chem. Soc., Vol. 122, p. 5399, 2000. https://doi.org/10.1021/ja0006200
  4. V. S. Lin, K. Motesharei, K. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A Porous Silicon-Based Optical Interferometric Biosensor", Science, Vol. 278, p. 840, 1997. https://doi.org/10.1126/science.278.5339.840
  5. M. Simion, I. Kleps, T. Neghina, A. Angelescu, M. Miu, A. Bragaru, M. Danila, E. Condac, M. Costache, and L. Savu, "Nanoporous silicon matrix used as biomaterial", J. Alloy. Compd., Vol. 434, p. 830, 2007. https://doi.org/10.1016/j.jallcom.2006.08.093
  6. S. Ilyas, T. Bocking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, "Porous silicon based narrow line-width rugate filters", Opt. Mater., Vol. 29, p. 619, 2007. https://doi.org/10.1016/j.optmat.2005.10.012
  7. M. A. Khan, M. S. Haque, H. A. Naseem, W. D. Brown, and A. P. Malshe, "Microwave plasma chemical vapor deposition of diamond films with low residual stress on large area porous silicon substrates", Thin Solid Films, Vol. 332, p. 93, 1998. https://doi.org/10.1016/S0040-6090(98)01209-7
  8. S. E. Lotant, S. Content, T. T. Tan, F. Zenhausern, and M. J. Sailor, "Integration of porous silicon chips in an electronic artificial nose", Sensor Actuat. B- Chem., Vol. 69, p. 193, 2000. https://doi.org/10.1016/S0925-4005(00)00539-6
  9. S. Jang, J. Kim, Y. Koh, Y. C. Ko, H.-G. Woo, and H. Sohn, "Multi-Encoded Rugate Porous Silicon as Nerve Agents Sensors", J. Nanosci. Nanotechnol., Vol. 7, p. 4049, 2007. https://doi.org/10.1166/jnn.2007.096
  10. S. Jang, Y. Koh, J. Kim, J. Park, C. Park, S. J. Kim, S. Cho, Y. C. Ko and H. Sohn, "Detection of organophosphates based on surface-modified DBR porous silicon using LED light", Mater. Lett., Vol. 62, p. 552, 2008. https://doi.org/10.1016/j.matlet.2007.06.009
  11. P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, "Vapor sensing using the optical properties of porous silicon Bragg mirrors", J. Appl. Phys.,Vol. 86, p. 1781, 1999. https://doi.org/10.1063/1.370968
  12. S. G. Kim, S. Kim, Y. C. Ko, S. Cho, and H. Sohn, "Enzastaurin, a Protein Kinase C beta Inhibitor, Suppresses Signaling through the Ribosomal S6 Kinase and Bad Pathways and Induces Apoptosis in Human Gastric", Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 313, p. 398, 2008. https://doi.org/10.1016/j.colsurfa.2007.04.119
  13. G. Cullins, L. T. Canham, and P. D. J. Calcott, "Cytologic identification of Toxoplasma gondii in bronchoalveolar lavage fluid of experimentally infected cats", J. Appl. Phys., Vol. 82, p. 909, 1997. https://doi.org/10.1063/1.366536
  14. J. H. Song, M. J. Sailor, "Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels", J. Am. Chem. Soc., Vol. 119, p. 7381, 1997. https://doi.org/10.1021/ja971209o
  15. S. Content, W. C. Trogler, and M. J. Sailor, "Detection of Nitrobenzene, DNT, and TNT Vapors by Quenching of Porous Silicon Photoluminescence", J. Chem. Eur., Vol. 6 p. 2205, 2000. https://doi.org/10.1002/1521-3765(20000616)6:12<2205::AID-CHEM2205>3.0.CO;2-A
  16. G. Cullis, L. T. Canham, and P. D. J. Calcott, "Luminescent anodized silicon aerocrystal networks prepared by supercritical drying", J. Appl. Phys., Vol. 82 p. 909, 1997. https://doi.org/10.1063/1.366536
  17. M. Ben-Chorin, A. Kux, and I. Schechter, "Adsorbate effects on photoluminescence and electrical conductivity of porous silicon", Appl. Phys. Lett., Vol. 64 p. 481, 1993.
  18. J. L. Coffer, S. C. Lilley, R. A. Martin, and L. A. Files-Sesler, "Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA", J. Appl. Phys., Vol. 74, p. 2094, 1993. https://doi.org/10.1063/1.354754
  19. J. Harper, M. J. Sailor, "Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon", Anal. Chem., Vol. 68, p. 3713 1996. https://doi.org/10.1021/ac960642y
  20. J. H. Song, M. J. Sailor, "Quenching of photoluminescence from porous silicon by aromatic molecules", J. Am. Chem. Soc., Vol. 119, p. 7381, 1997. https://doi.org/10.1021/ja971209o
  21. D.-A. Kim, J.-H. Shim, N.-H. Cho, "Nanostructural and PL Features of nc-Si: H Thin Films Prepared by PECVD Techniques", Appl. Surf. Sci., Vol. 234 p. 256, 2004. https://doi.org/10.1016/j.apsusc.2004.05.028