DOI QR코드

DOI QR Code

Detection of Volatile Alcohol Vapors Using Silicon Quantum Dots Based on Porous Silicon

다공성 실리콘을 근거한 실리콘 양자점을 이용한 휘발성 알콜 증기의 감지

  • Received : 2010.06.14
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

Silicon quantum dots base on photoluminescent porous silicon were prepared from an electrochemical etching of n-type silicon wafer (boron-dopped<100> orientation, resistivity of 1~10 ${\Omega}-cm$) and used as a alcohol sensor. Silicon quantum dots displayed an emission band at the wavelength of 675 nm with an excitation wavelength of 480 nm. Photoluminescence of silicon quantum dots was quenched in the presence of alcohol vapors such as methanol, ethanol, and isopropanol. Quenching efficiencies of 21.5, 32.5, and 45.8% were obtained for isopropanol, ethanol, and methanol, respectively. A linear relationship was obtained between quenching efficiencies and vapor pressure of analytes used. Quenching photoluminescence was recovered upon introducing of fresh air after the detection of alcohol. This provides easy fabrication of alcohol sensor based on porous silicon.

Keywords

References

  1. A. Bsiesy, J. C. Vial, F. Gaspard, R. Herio, M. Ligeon, F. Muller, R. Romenstain, A. Wasiela, A. Halimaoui, and G. Bomchil, "Voltage-controlled spectral shift of porous silicon electroluminescence", Surf. Sci., Vol. 254, p. 195. 1991. https://doi.org/10.1016/0039-6028(91)90652-9
  2. A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, and J. C. J. Oberlin, "Electrically induced selective quenching of porous silicon photoluminescence", Electrochem. Soc., , Vol. 138, p. 3450. 1991. https://doi.org/10.1149/1.2085432
  3. J. C. Vial, A. Bsiesy, F. Gaspard, R. Herio, M. Ligeon, F. Muller, R. Romenstain, and R. M. Macfarlane, "Mechanisms of visible-light emission from electro-oxidized porous silicon", Phys. Rev. B., Vol. 45, p. 171. 1992. https://doi.org/10.1103/PhysRevB.45.171
  4. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, p. 1046. 1990. https://doi.org/10.1063/1.103561
  5. A. G. Cullis and L. T. Canham, "The structural and luminescence properties of porous silicon", Nature, Vol. 353, p. 335. 1991. https://doi.org/10.1038/353335a0
  6. F. Gaspard, A. Bsiesy, M. Ligeon, F. Muller, and R. J. Herio, "Charge Exchange Mechanism Responsible for p-type Silicon Dissolution during Porous Silicon Formation", Electrochem. Soc., Vol. 136, p. 3043. 1989. https://doi.org/10.1149/1.2096399
  7. S. R. NicewarnerPena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Sailor, "The influence of the method of canal preparation on the quality of apical and coronal obturation", Science, Vol. 294, p. 137. 2001. https://doi.org/10.1126/science.294.5540.137
  8. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals", Nat. Mater, Vol. 1, p. 39, 2002. https://doi.org/10.1038/nmat702
  9. J. Park, S. Cho, and H. Sohn, "Multiple bit encodings of multilayer porous silicon", Korean Phys. Soc., Vol. 50, p. 695, 2007. https://doi.org/10.3938/jkps.50.695
  10. S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, "Porous Silicon Photonic Crystals as Encoded Microcarriers", Adv. Mater, Vol. 16, p. 1811, 2004. https://doi.org/10.1002/adma.200400713
  11. T. A. Schmedake, F. Cunin, J. R. Link, and M. J. Sailor, "Standoff Detection of Chemicals Using Porous Silicon Smart Dust Particles", Adv. Mater, Vol. 12, p. 1270, 2002.
  12. S. W. Hong and W. H Jo, "Development of Fluorescence Resonance Energy Transfer sensors", Seoul National University PST., Vol. 18, p. 4, 2007.
  13. A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots", Science, Vol. 271, p. 933, 1996. https://doi.org/10.1126/science.271.5251.933
  14. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Surface electronic properties of CdSe nanocrystallites", J. Am. Chem. Soc., Vol. 115, p. 8706, 1993. https://doi.org/10.1021/ja00072a025
  15. M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, "Organometallic synthesis of GaAs crystallites exhibiting quantum confinement", J. Am. Chem. Soc., Vol. 112, p. 9438, 1990. https://doi.org/10.1021/ja00181a080