Journal of Integrative Natural Science (통합자연과학논문집)
- Volume 3 Issue 1
- /
- Pages.38-42
- /
- 2010
- /
- 3022-8883(pISSN)
DOI QR Code
Sign Language Shape Recognition Using SOFM Neural Network
SOFM 신경망을 이용한 수화 형상 인식
- Park, Kyung-Woo (Dept. of Hospital Information Management, Gwangju Health College)
- 박경우 (광주보건대학 병원전산과)
- Received : 2010.01.28
- Accepted : 2010.03.20
- Published : 2010.03.31
Abstract
인간은 정보전달을 위하여 언어 이외에 동작, 표정과 같은 비언어적인 수단을 이용한다. 이러한 비언어적인 수단을 정확히 분석 할 수 있다면 인간과 컴퓨터간의 자연스럽고 지적인 인터페이스를 구축할 수 있게 된다. 본 논문은 별도의 센서를 부착하지 않은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다. 제안 방법으로는 피부색 정보를 이용하여 배경으로부터 손 영역만을 추출한 후 추출된 손 영역의 형상을 인식한다(전처리과정으로 모델이미지의 사이즈와 압축 및 컬러에 대한 정보를 정규화 시켰다). 또한 인식 효율을 높이기 위해 SOFM 신경망 알고리즘을 적용함으로서 보다 안정적으로 손 형상을 인식할 수 있게 되었으며, 손 형상 인식률에 대한 안전성과 정확성을 향상시킬 수 있었다. 그리고 인식된 손 형상의 의미를 텍스트로 보여줌으로서 사용자의 의사를 정확하게 전달할 수 있다.