DOI QR코드

DOI QR Code

Dehydrocoupling of Bis(silyl)alkylbenzenes to Network Polysilanes, Catalyzed by Group 4 Metallocene Combination

  • Kim, Myoung-Hee (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Lee, Jun (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Moo, Soo-Yong (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Kim, Jong-Hyun (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Ko, Young Chun (School of Liberal Arts, Daebul University) ;
  • Woo, Hee-Gweon (Department of Chemistry and Nanotechnology Research Center, Chonnam National University)
  • Received : 2010.02.11
  • Accepted : 2010.03.20
  • Published : 2010.03.31

Abstract

Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were synthesized in high yields by the reduction of the corresponding chlorosilanes with $LiAlH_4$ in diethyl ether. The dehydrocoupling of 1 and 2 was performed using group IV metallocene complexes generated in situ from $Cp_2MCl_2$/Red-Al and $Cp_2MCl_2$/n-BuLi (M = Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 ($M_w$ vs polystyrene using GPC) and from 500 to 900 ($M_w$ vs polystyrene using GPC). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble network polymer.

Keywords

References

  1. R. D. Miller, Michl, J. Chem. Rev. 1989, 89, 1359. https://doi.org/10.1021/cr00096a006
  2. R. West, J. Organomet. Chem. 1986, 300, 327. https://doi.org/10.1016/0022-328X(86)84068-2
  3. J. M. Ziegler and F. W. G. Fearon, Silicon-based Polymer Science; American Chemical Society: Washington, DC, 1990.
  4. C. Aitken, J. F. Harrod, U. S. Gill, Can. J. Chem. 1987. 65, 1804.
  5. Harrod, J. F.; Yun, S. S. Organometallics 1987, 6, 1381. https://doi.org/10.1021/om00150a002
  6. Aitken, C.; Barry, J.- P.; Gauvin, F.; Harrod, J. F.; Malek, A.; Rousseau, D. Organometallics 1989, 8, 1732. https://doi.org/10.1021/om00109a025
  7. Harrod, J. F.; Ziegler, T.; Tschinke, V. Organometallics 1990, 9, 897. https://doi.org/10.1021/om00118a002
  8. Woo, H.-G.; Harrod, J. F.; Henique, J.; Samuel, E. Organometallics 1993, 12, 2672. https://doi.org/10.1021/om00031a042
  9. H.-G. Woo and T. D. Tilley, J. Am. Chem. Soc. 1989, 111, 3757. https://doi.org/10.1021/ja00192a048
  10. Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 8043. https://doi.org/10.1021/ja00202a070
  11. Woo, H.-G.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 5698. https://doi.org/10.1021/ja00040a032
  12. Woo, H.-G.; Walzer, J. F.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 7047. https://doi.org/10.1021/ja00044a015
  13. Banovetz, J. P. ; Suzuki, H. ; Waymouth, R. M. Organometallics 1993, 12, 4700. https://doi.org/10.1021/om00035a070
  14. H.-G. Woo, J. F. Walzer and T. D. Tilley, Macromolecules 1991, 24, 6863. https://doi.org/10.1021/ma00026a013
  15. Imori, T.; Woo, H.- G.; Walzer, J. F.; Tilley, T. D. Chem. Mater. 1993, 5, 1487. https://doi.org/10.1021/cm00034a019
  16. J. F. Harrod, In Transformation of Organometallics into Common and Exotic Materials: Design and Activation; Laine, R. M., Ed.; NATO ASI Series E: Appl. Sci. No. 141; Martinus Nijhoff Publisher: Amsterdam, 1988; p 103.
  17. Mu, Y.; Harrod, J. F. In Inorganic and Organometallic Polymers and Oligomers; Harrod, J. F., Laine, R. M., Eds.; Kluwer Acamic Publishers: Dordrecht, 1991; p 23.
  18. H.-G. Woo and J. F. Harrod, Manuscript in preparation.
  19. T. D. Tilley, Acc. Chem. Res. 1993, 26, 22. https://doi.org/10.1021/ar00025a004
  20. W. H. Campbell and T. K. Hilty, Organometallics 1989, 8, 2615. https://doi.org/10.1021/om00113a016
  21. Hengge, E.; Weinberger, M.; Jammegg, C. J. Organomet. Chem. 1991, 410, C1. https://doi.org/10.1016/0022-328X(91)83031-X
  22. Hengge, E.; Weinberger, M. J. Organomet. Chem. 1992, 433, 21. https://doi.org/10.1016/0022-328X(92)80127-J
  23. H.-G. Woo, M.-K. Han, E. J. Cho and I. N. Jung, Bull. Korean Chem. Soc. 1995, 16(1), 58.
  24. Woo, H.-G.; Kim, S.-Y.; Cho, E. J.; Jung, I. N. Bull Korean Chem. Soc. 1995, 16(2), 138.
  25. S. H. Yeon, J. S. Han, I. N. Jung, Bull. Korean Chem. Soc., in press.
  26. Lee, B. W.; Yoo, B. R.; Kim, S.-I.; Jung, I. N. Organometallics 1994, 13, 1312. https://doi.org/10.1021/om00016a038
  27. J. Y. Corey, J. L. Huhmann and X.-H. Zhu, Organometallics 1993, 12, 1121. https://doi.org/10.1021/om00028a029
  28. H.-G. Woo, S.-J. Song, E. J. Cho and I. N. Jung, Manuscript in preparation.
  29. M. Ballestri, C. Chatgilialoglu, M. Guerra and A. Guerrini, Lucarini, M.; Seconi, G. J. Chem. Soc., Perkin Trans. 2, 1993, 421 and references theirin.