DOI QR코드

DOI QR Code

Theoretical Studies on Dicyanoanthracenes as Organic Semiconductor Materials: Reorganization Energy

  • Park, Young-Hee (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Materials Science & Engineering and ERI, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2010.01.18
  • Accepted : 2010.03.29
  • Published : 2010.06.20

Abstract

Internal reorganization energy due to the structural relaxation in hole or electron hopping mechanism is one of the measurements of key indices in designing an organic thin film transistor (OTFT) for flexible display devices. In this study, the reorganization energies of dicyanoanthracenes for the hole and electron transfer were estimated by adiabatic potential energy surface and normal mode analysis method in order to examine the effect on the energies for the positional variation of the cyano substituents in the anthracene as a protocol of acenes to design an organic field effect transistor. The reorganization energy for the hole transfer was reduced considerably upon cyanation of anthracene, especially at the 9,10-positions of anthracene, and the origin of the reduction was interpreted in terms of understanding the coupling of vibrational modes to the hole transfer.

Keywords

References

  1. Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. Science 1994, 265, 1684. https://doi.org/10.1126/science.265.5179.1684
  2. Horowitz, G.; Fichou, D.; Peng, X. Z.; Xu, Z. G.; Garnier, F. Solid State Commun. 1989, 72, 381. https://doi.org/10.1016/0038-1098(89)90121-X
  3. Horowitz, G. Adv. Mater. 1998, 10, 365. https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  4. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; De Leeuw, D. M. Nature (London) 1999, 401, 685. https://doi.org/10.1038/44359
  5. Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y. Y.; Dodabalapur, A. Nature (London) 2000, 404, 478. https://doi.org/10.1038/35006603
  6. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  7. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539. https://doi.org/10.1038/347539a0
  8. Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Science 1996, 273, 884. https://doi.org/10.1126/science.273.5277.884
  9. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121. https://doi.org/10.1038/16393
  10. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. https://doi.org/10.1126/science.258.5087.1474
  11. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature (London) 1995, 376, 498. https://doi.org/10.1038/376498a0
  12. Yu, G.; Wang, J.; McElvain, J.; Heeger, A. J. Adv. Mater. 1998, 10, 1431. https://doi.org/10.1002/(SICI)1521-4095(199812)10:17<1431::AID-ADMA1431>3.0.CO;2-4
  13. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  14. Katz, H. E. J. Mater. Chem. 1997, 7, 369. https://doi.org/10.1039/a605274f
  15. Nelson, S. F.; Lin, Y. Y.; Gundlach, D. J.; Jackson, T. N. Appl. Phys. Lett. 1998, 72, 1854. https://doi.org/10.1063/1.121205
  16. Klauk, H.; Gundlach, D. J.; Bonses, M.; Kuo, C. C.; Jackson, T. N. Appl. Phys. Lett. 2000, 76, 1692. https://doi.org/10.1063/1.126138
  17. Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169.
  18. Yamada, M.; Ikemote, I.; Kuroda, H. Bull. Chem. Soc. Jpn. 1988, 61, 1057. https://doi.org/10.1246/bcsj.61.1057
  19. Kagan, C. R.; Afzali, A.; Graham, T. O. Appl. Phys. Lett. 2005, 86, 193505. https://doi.org/10.1063/1.1924890
  20. Herwig, P. T.; Müllen, K. Adv. Mater.1999, 11, 480. https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<480::AID-ADMA480>3.0.CO;2-U
  21. Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482. https://doi.org/10.1021/ja0162459
  22. Anthony, J. E.; Eaton, D. L.; Parkin, S. R. Org. Lett. 2002, 4, 15. https://doi.org/10.1021/ol0167356
  23. Meng, H.; Bendikov, M.; Mitchell, G.; Helgeson, R.; Wudl, F.; Bao, Z.; Siegrist, T.; Kloc, C.; Chen, C. H. Adv. Mater. 2003, 15, 1090. https://doi.org/10.1002/adma.200304935
  24. Miao, Q.; Nguyen, T. Q.; Someya, T.; Blanchet, G. B.; Nuckolls, C. J. Am. Chem. Soc. 2003, 125, 10284. https://doi.org/10.1021/ja036466+
  25. Kim. Y. H; Kwon, S. K.; Yoo, D. S.; Rubner, M. F.; Wrighton, M. S. Chem. Mater. 1997, 9, 2699. https://doi.org/10.1021/cm970586x
  26. Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201. https://doi.org/10.1063/1.1475361
  27. Liu, T. H.; Shen, W. J.; Balaganesan, B.; Yen, C. K.; Iou, C. Y.; Chen, H. H.; Chen, C. H. Synth. Met. 2003, 137, 1033. https://doi.org/10.1016/S0379-6779(02)00891-3
  28. Lin, J.-H.; Elangovan, A.; Ho, T.-I. J. Org. Chem. 2005, 70, 7397. https://doi.org/10.1021/jo051183g
  29. Kim, Y-H.; Jeong, H-C.; Kim, S-H.; Yang, K.; Kwon, S-K. Adv. Funct. Mater. 2005, 15, 1799. https://doi.org/10.1002/adfm.200500051
  30. Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318. https://doi.org/10.1021/ja0397916
  31. Koh, S. E.; Risko, C.; de Silva Filho, D. A.; Kwon, O.; Facchetti, A.; Bredas, J. L.; Marks, T. J.; Ratner, M. A. Adv. Funct. Mater. 2008, 18, 332. https://doi.org/10.1002/adfm.200700713
  32. Hapiot, P.; Demanze, F.; Yassar, A.; Garnier, F. J. Phys. Chem. 1996, 100, 8397. https://doi.org/10.1021/jp953226a
  33. Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 2339. https://doi.org/10.1021/ja0461421
  34. De Oliveira, M. A.; Dos Santos, H. F.; De Almeida, W. B. In. J. Quan. Chem. 2002, 90, 603. https://doi.org/10.1002/qua.10041
  35. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
  36. Kuo, M.-Y.; Chen, H.-Y.; Chao, I. Chem. Eur. J. 2007, 13, 4750. https://doi.org/10.1002/chem.200601803
  37. Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971 https://doi.org/10.1021/cr040084k
  38. Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. https://doi.org/10.1103/RevModPhys.65.599
  39. Bredas, J.-L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Proc. Natl. Acad. Sci. USA 2002, 99, 5804. https://doi.org/10.1073/pnas.092143399
  40. Park, Y. H.; Yang, K.; Kim, Y.-H.; Kwon, S. K. Bull. Korean Chem. Soc. 2007, 28, 1358. https://doi.org/10.5012/bkcs.2007.28.8.1358
  41. Balzani, V., Ed. Electron Transfer in Chemistry; Wiley-VCH:Weinheim, 2001.
  42. Bixon, M., Jortner, J., Eds.; Electron Transfer: From Isolated Molecules to Biomolecules; Wiley: New York, 1999; Vols. 106-107.
  43. Marcus, R. A. J. Chem. Phys. 1956, 24, 966 and 979.
  44. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. https://doi.org/10.1016/0304-4173(85)90014-X
  45. Reimers, J. R. J. Chem. Phys. 2001, 115, 9103. https://doi.org/10.1063/1.1412875
  46. Silinsh, E. A.; Klimkans, A.; Larsson, S.; Capek, V. Chem. Phys. 1995, 198, 311. https://doi.org/10.1016/0301-0104(95)00151-D
  47. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adame, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J.J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7: Gaussian, Inc., Pittsburgh, PA, 1998.
  48. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  49. Zerner, M. C.; Correa de Mello, P.; Hehenberger, M. Int. J. Quant. Chem. 1982, 21, 251. https://doi.org/10.1002/qua.560210123
  50. Hanson, L. K.; Fajer, J.; Thompson, M. A.; Zerner, M. C. J. Am. Chem. Soc. 1987, 109, 4728. https://doi.org/10.1021/ja00249a050
  51. Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96. https://doi.org/10.1021/ja01280a022
  52. Coropceanu, V.; Malagoli, M.; da Silva Filho, D. A.; Gruhn, N. E.; Bill, T. G.; Brédas, J. L. Phys. Rev. Lett. 2002, 89, 275503. https://doi.org/10.1103/PhysRevLett.89.275503
  53. Janak, J. F. Phys. Rev. B 1978, 18, 7165. https://doi.org/10.1103/PhysRevB.18.7165
  54. Sebastian, L.; Weiser, G.; Bassler, H. Chem. Phys. 1981, 61, 125. https://doi.org/10.1016/0301-0104(81)85055-0
  55. Sebastian, L.; Weiser, G.; Peter, G.; Bässler, H. Chem. Phys. 1983, 75, 103. https://doi.org/10.1016/0301-0104(83)85012-5
  56. Bounds, P. J.; Siebrand, W. Chem. Phys. Letters 1980, 75, 414. https://doi.org/10.1016/0009-2614(80)80545-8

Cited by

  1. Poly(1,4-bis((E)-2-(3-dodecylthiophen-2-yl)vinyl)benzene) for Solution Processable Organic Thin Film Transistor vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1659
  2. Theoretical studies on dimerization reactions of 4, 7-diphenyl-1,10-phenanthroline (BPhen) and bathocuproine (BCP) in organic semiconductors vol.48, pp.8, 2014, https://doi.org/10.1134/S1063782614080223
  3. Fluorescence Characteristics of [(Benzoyloxy)methyl]anthracene Donor–Acceptor Systems vol.119, pp.29, 2015, https://doi.org/10.1021/acs.jpca.5b01451
  4. A quantum-chemical study of conformational and electronic properties of ter-anthrylene-ethynylene derivatives in neutral and ionized states vol.639, pp.1, 2016, https://doi.org/10.1080/15421406.2016.1254517
  5. Substituent effect on the spin state of the graphene nanoflakes vol.6, pp.69, 2016, https://doi.org/10.1039/c6ra14279f
  6. Nature (Hole or Electron) of Charge-Transfer Ability of Substituted Cyclopyrenylene Hoop-Shaped Compounds vol.124, pp.18, 2010, https://doi.org/10.1021/acs.jpca.9b09869
  7. Development of a MATLAB Algorithm for Calculating Reorganization Energy Utilizing Rectilinear Normal Mode Displacements: Investigation of the Effect of Substituents on Electron and Hole vol.42, pp.3, 2010, https://doi.org/10.1002/bkcs.12216