DOI QR코드

DOI QR Code

Binding Modes of New Bis-Ru(II) Complexes to DNA: Effect of the Length of the Linker

  • Received : 2010.02.01
  • Accepted : 2010.04.02
  • Published : 2010.06.20

Abstract

Bis-[dipyrido[3,2-$\alpha$:2',3'-c]phenazine)$_2$(1,10-phenanthroline)$_2Ru_2$]$^{2+}$ complexes (bis-Ru(II) complexes) tethered by linkers of various lengths were synthesized and their binding properties to DNA investigated by normal absorption and linear dichroism spectra, and fluorescence techniques in this study. Upon binding to DNA, the bis-Ru(II) complex with the longest linker (1,3-bis-(4-pyridyl)-propane), exhibited a negative $LD^r$ signal whose intensity was as large as that in the DNA absorption region, followed by a complicate $LD^r$ signal in the metal-to-ligand charge transfer region. The luminescence intensity of this bis-Ru(II) complex was enhanced. The observed $LD^r$ and luminescence results resembled that of the [Ru(1,10-phenanthroline)$_2$ dipyrido[3,2-$\alpha$:2',3'-c]phenazine]$^{2+}$ complex, whose dipyrido[3,2-$\alpha$:2',3'-c]phenazine (dppz) ligand has been known to intercalate between DNA bases. Hence, it is conclusive that both dppz ligands of the bis-Ru(II) complex intercalate. The binding stoichiometry, however, was a single intercalated dppz per ~ 2.3 bases, which violates the "nearest binding site exclusion" model for intercalation. The length between the two Ru(II) complexes may be barely long enough to accommodate one DNA base between the two dppz ligands, but not for two DNA bases. When the linker was shorter (4,4'-bipyridine or 1,2-bis-(4-pyridyl)-ethane), the magnitude of the LD in the dppz absorption region, as well as the luminescence intensity of both bis-Ru(II) complexes, was half that of the bis-Ru(II) complex bearing a long linker. This observation can be elucidated by a model whereby one of the dppz ligands intercalates while the other is exposed to the aqueous environment.

Keywords

References

  1. Delaney, S.; Yoo, J.; Stemp, E.D.A.; Barton, J. K. Proc. Natl. Acad. Sci. USA 2004, 101, 10511-10516. https://doi.org/10.1073/pnas.0403791101
  2. Youn, M.R.; Moon, S. J.; Lee, B.W.; Lee, D.-J.; Kim, J. M.; Kim, S.K.; Lee, C.-S. Bull. Korean Chem. Soc. 2005, 26, 537-542. https://doi.org/10.5012/bkcs.2005.26.4.537
  3. Lee, B. W.; Moon, S. J.; Youn, M. R.; Kim, J. H.; Jang, H. G.; Kim, S.K. Biophys. J. 2003, 85, 3865-3871. https://doi.org/10.1016/S0006-3495(03)74801-2
  4. Yun, B. H.; Kim, J. O.; Lee, B. W.; Lincoln. P.; Nordén, B.; Kim, J. M.; Kim, S. K. J. Phys. Chem. B 2003, 107, 9858-9864. https://doi.org/10.1021/jp027828n
  5. Greguric, A.; Greguric, I. D.; Hambley, T. W.; Aldrich-Wright, J. R.; Collins, J. G. Dalton Trans. 2002, 849-855.
  6. Haq, I.; Lincoln, P.; Suh, D.; Nordén, B.; Chowdhry, B. Z.; Chaires, J. B. J. Am. Chem. Soc. 1995, 117, 4788-4796. https://doi.org/10.1021/ja00122a008
  7. Hirot, C.; Lincoln, P.; Nordén, B. J. Am. Chem. Soc. 1993, 115, 3448-3454. https://doi.org/10.1021/ja00062a007
  8. Jenkins, Y.; Freidman, A. E.; Turro, N. J.; Barton J. K. Biochemistry 1992, 31, 10809-10816. https://doi.org/10.1021/bi00159a023
  9. Freidman, A. E.; Chambron, J.-C.; Sauvage, J.-P.; Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1990, 112, 4960-4962. https://doi.org/10.1021/ja00168a052
  10. Olson, E. J. C.; Hu, D.; Hörmann, A.; Jonkman, A. M.; Arkin, M. R.; Stemp, E. D. A.; Barton, J. K.; Barbara, P. F. J. Am. Chem. Soc. 1997, 119, 11458-11467. https://doi.org/10.1021/ja971151d
  11. Nair, R. B.; Cullum, B. M.; Murphy, C. J. Inorg. Chem. 1997, 36, 962-965. https://doi.org/10.1021/ic960862u
  12. Onfelt, B.; Lincoln, P.; Norden, B.; Baskin, J. S.; Zewail, A. H. Proc. Natl. Acad. Sci. USA 2000, 97, 5708-5713. https://doi.org/10.1073/pnas.100127397
  13. Coates, C. G.; Olofsson, J.; Coletti, M.; McGarvey, J. J.; Onfelt, B.; Lincoln, P.; Nordén, B.; Tuite, E.; Matousek, P.; Parker, A. W. J. Phys. Chem. B 2001, 105, 12653-12664. https://doi.org/10.1021/jp0127115
  14. Coates, C. G.; McGarvey, J. J.; Callaghan, P. L.; Coletti, M.; Hamilton, J. G. J. Phys. Chem. B 2001, 105, 730-735. https://doi.org/10.1021/jp002856w
  15. Moon, S. J.; Kim, J. M.; Choi, J. Y.; Kim, S. K.; Lee, J. S.; Jang, H. G. J. Inorg. Biochem. 2005, 99, 994-1000. https://doi.org/10.1016/j.jinorgbio.2005.01.003
  16. Kim, J. M.; Lee, J.-M.; Choi, J. Y.; Lee, H. M.; Kim, S. K. J. Inorg. Biochem. 2007, 101, 1387-1393.
  17. Onfelt, B.; Lincoln, P.; Norden, B. Proc. Natl. Acad. Sci. USA 2000, 97, 5708-5713. https://doi.org/10.1073/pnas.100127397
  18. Onfelt, B.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 2001, 123, 3630-3637. https://doi.org/10.1021/ja003624d
  19. Metcalfe, C.; Haq, I.; Thomas, J. A. Inorg. Chem. 2004, 43, 317-323. https://doi.org/10.1021/ic034749x
  20. Pierard, F.; Kirsh-De Mesmaeker, A. Inorg. Chem. Commun. 2006, 9, 111-126. https://doi.org/10.1016/j.inoche.2005.10.016
  21. Wilhelmsson, L. M.; Westerlund, F.; Lincoln, P.; Nordén, B. J. Am. Chem. Soc. 2002, 124, 12092-12093. https://doi.org/10.1021/ja027252f
  22. Nordell, P.; Westerlund, F.; Wilhelmsson, L. M.; Norden, B.; Lincoln, P. Angew. Chem. Int. Ed. 2007, 46, 2203-2206. https://doi.org/10.1002/anie.200604294
  23. Jang, Y. J.; Kwon, B.-H.; Choi, B.-H.; Bae, C. H.; Seo, M. S.; Nam, W.; Kim, S. K. J. Inorg. Biochem. 2008, 102, 1885-1891. https://doi.org/10.1016/j.jinorgbio.2008.06.012
  24. Amouyal, E.; Homsi, A.; Chambron, J. C.; Sauvage, J. P. Chem. Soc. Dalton Trans. 1990, 1841-1845.
  25. Norden, B.; Kubista, M.; Kurucsev, T. Q. Rev. Biophys. Chem. 1992, 25, 51-170. https://doi.org/10.1017/S0033583500004728
  26. Norden, B.; Kurucsev, T. J. Mol. Recognit. 1994, 7, 141-156. https://doi.org/10.1002/jmr.300070211
  27. Rodger, A.; Nordén, B. Circular Dichroism & Linear Dichroism; Oxford University Press: New York, 1997.
  28. Lincoln, P.; Anders, B.; Norden, B. J. Am. Chem. Soc. 1996, 118, 2644-2653. https://doi.org/10.1021/ja953363l

Cited by

  1. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing vol.12, pp.20, 2012, https://doi.org/10.1039/c2lc40610a
  2. ] vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2117
  3. Photoinduced Interactions of Supramolecular Ruthenium(II) Complexes with Plasmid DNA: Synthesis and Spectroscopic, Electrochemical, and DNA Photocleavage Studies vol.54, pp.7, 2015, https://doi.org/10.1021/ic502340p
  4. Interaction and Binding Modes of bis-Ruthenium(II) Complex to Synthetic DNAs vol.6, pp.6, 2016, https://doi.org/10.3390/met6060141
  5. Direction of Intercalation of a bis-Ru(II) Complex to DNA Probed by a Minor Groove Binding Molecule 4',6-Diamidino-2-phenylindole vol.34, pp.10, 2010, https://doi.org/10.5012/bkcs.2013.34.10.2895