DOI QR코드

DOI QR Code

Effects of Guanidination with Trypsin, Lys-C, or Glu-C Digestion on Mass Spectrometric Signal Intensity and Protein Sequence Coverage

  • Han, Hye-Sun (Department of Chemistry, Chungnam National University) ;
  • Nho, Seon-Ho (Department of Chemistry, Chungnam National University) ;
  • Lee, Ae-Ra (Department of Chemistry, Chungnam National University) ;
  • Kim, Jeong-Kwon (Department of Chemistry, Chungnam National University)
  • Received : 2010.01.23
  • Accepted : 2010.04.08
  • Published : 2010.06.20

Abstract

The conventional peptide modification process of guanidination, in which the amino groups of lysine residues are converted to guanidino groups using O-methylisourea to create more basic homoarginine residues, is often used to improve the signal intensity of lysine-containing peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Here, we used three different protease enzymes (trypsin, Lys-C, and Glu-C) to evaluate the effects of guanidination on the MS signals of two enzymatically digested proteins. Horse heart myoglobin and bovine serum albumin were guanidinated either before or after digestion with trypsin, Lys-C, or Glu-C. The resulting peptides were subjected to MALDI-MS, and signal intensities and sequence coverage were systematically evaluated for each digest. Guanidination prior to Glu-C digestion improved sequence coverage for both proteins. For myoglobin, guanidination before enzymatic digestion with trypsin or Lys-C also enhanced sequence coverage, but guanidination after enzymatic digestion enhanced sequence coverage only with Lys-C. For albumin, guanidination either before or after Glu-C digestion increased sequence coverage, whereas pre- or post-digestion guanidination decreased sequence coverage with trypsin and Lys-C. The amino acid composition of a protein appears to be the major factor determining whether guanidination will enhance its MALDI-MS sequence coverage.

Keywords

References

  1. Krause, E.; Wenschuh, H.; Jungblut, P. R. Anal. Chem. 1999, 71, 4160. https://doi.org/10.1021/ac990298f
  2. Pitteri, S. J.; Reid, G. E.; McLuckey, S. A. J. Proteome Res. 2004, 3, 46. https://doi.org/10.1021/pr034054u
  3. Beardsley, R. L.; Reilly, J. P. J. Am. Soc. Mass Spectrom. 2004, 15, 158. https://doi.org/10.1016/j.jasms.2003.10.007
  4. Kim, J. S.; Kim, J. H.; Kim, H. J. Rapid Commun. Mass Spectrom. 2008, 22, 495. https://doi.org/10.1002/rcm.3392
  5. Conrotto, P.; Hellman, U. Rapid Commun. Mass Spectrom. 2008, 22, 1823. https://doi.org/10.1002/rcm.3555
  6. Seidl, D. S.; Liener, I. E. Biochem. Biophys. Res. Commun. 1971, 42, 1101. https://doi.org/10.1016/0006-291X(71)90018-0
  7. Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Rapid Commun. Mass Spectrom. 2000, 14, 2147. https://doi.org/10.1002/1097-0231(20001215)14:23<2147::AID-RCM145>3.0.CO;2-M
  8. Hale, J. E.; Butler, J. P.; Knierman, M. D.; Becker, G. W. Anal. Biochem. 2000, 287, 110. https://doi.org/10.1006/abio.2000.4834
  9. Beardsley, R. L.; Reilly, J. P. Anal. Chem. 2002, 74, 1884. https://doi.org/10.1021/ac015613o
  10. Brancia, F. L.; Oliver, S. G.; Gaskell, S. J. Rapid Commun. Mass Spectrom. 2000, 14, 2070. https://doi.org/10.1002/1097-0231(20001115)14:21<2070::AID-RCM133>3.0.CO;2-G
  11. Brancia, F. L.; Montgomery, H.; Tanaka, K.; Kumashiro, S. Anal. Chem. 2004, 76, 2748. https://doi.org/10.1021/ac030421+
  12. Cagney, G.; Emili, A. Nat. Biotechnol. 2002, 20, 163. https://doi.org/10.1038/nbt0202-163
  13. Wu, S. L.; Kim, J.; Hancock, W. S.; Karger, B. J. Proteome Res. 2005, 4, 1155. https://doi.org/10.1021/pr050113n
  14. Kim, J.; Zand, R.; Lubman, D. M. Electrophoresis 2003, 24, 782. https://doi.org/10.1002/elps.200390098
  15. Warwood, S.; Mohammed, S.; Cristea, I. M.; Evans, C.; Whetton, A. D.; Gaskell, S. J. Rapid Commun. Mass Spectrom. 2006, 20, 3245. https://doi.org/10.1002/rcm.2691
  16. Evans, R. L.; Saroff, H. A. J. Biol. Chem. 1957, 228, 295.
  17. Rickard, E. C.; Strohl, M. M.; Nielsen, R. G. Anal. Biochem. 1991, 197, 197. https://doi.org/10.1016/0003-2697(91)90379-8
  18. Han, K.; Davril, M.; Lohez, M.; Moczar, M.; Moczar, E. Paroi Arterielle 1979, 5, 69.
  19. Han, K.; Davril, M.; Moczar, M.; Moczar, E. Paroi Arterielle 1981, 7, 37.

Cited by

  1. Comparison of peptide guanidination efficiency using various reaction conditions vol.25, pp.2, 2012, https://doi.org/10.5806/AST.2012.25.2.114
  2. Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery vol.1, pp.7, 2013, https://doi.org/10.1039/c3bm60079c
  3. Sample Preparation for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry vol.6, pp.2, 2015, https://doi.org/10.5478/MSL.2015.6.2.27
  4. Current literature in mass spectrometry vol.45, pp.12, 2010, https://doi.org/10.1002/jms.1665
  5. Urea free and more efficient sample preparation method for mass spectrometry based protein identification via combining the formic acid-assisted chemical cleavage and trypsin digestion vol.86, pp.None, 2010, https://doi.org/10.1016/j.talanta.2011.08.052
  6. Guanidinated protein internal standard for immunoaffinity‐liquid chromatography/tandem mass spectrometry quantitation of protein therapeutics vol.28, pp.13, 2010, https://doi.org/10.1002/rcm.6924
  7. Effects of Matrices and Additives on Multiple Charge Formation of Proteins in MALDI-MS Analysis vol.30, pp.7, 2019, https://doi.org/10.1007/s13361-019-02213-7