DOI QR코드

DOI QR Code

Microwave Synthesis of a Porous Metal-Organic Framework, Nickel(II) Dihydroxyterephthalate and its Catalytic Properties in Oxidation of Cyclohexene

  • Lee, Ji-Sun (Catalysis Center for Molecular Engineering (CCME), Korea Research Institute of Chemical Technology (KRICT)) ;
  • Halligudi, Shiva B. (Catalysis Center for Molecular Engineering (CCME), Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jang, Nak-Han (Department of Chemistry Education, Kongju National University) ;
  • Hwang, Dong-Won (Catalysis Center for Molecular Engineering (CCME), Korea Research Institute of Chemical Technology (KRICT)) ;
  • Chang, Jong-San (Catalysis Center for Molecular Engineering (CCME), Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Young-Kyu (Catalysis Center for Molecular Engineering (CCME), Korea Research Institute of Chemical Technology (KRICT))
  • 투고 : 2009.12.03
  • 심사 : 2010.02.25
  • 발행 : 2010.06.20

초록

A porous coordination solid of nickel(II) dihydroxyterephthalate has been synthesized by the microwave-assisted (MW) method. The synthesized nickel(II) dihyroxylterephthalate was designated by the general formula of [$Ni_2$(dhtp) $(H_2O)_2]{\cdot}8H_2O$ (where, dhtp = 2,5-dihydroxyterephthalate, denoted by Ni-DHTP). The effect of microwave-irradiation temperature and time of irradiation on the porosity and morphological changes in the solids have also been investigated. The catalytic performance of Ni-DHTP synthesized by MW method has been studied in the oxidation of cyclohexene with aqueous $H_2O_2$, which gave cyclohexene oxide as the primary product and 2-cyclohexene-1-ol as a major product.

키워드

참고문헌

  1. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. https://doi.org/10.1038/nature01650
  2. Kitagawa, S.; Matsuda, R. Coord. Chem. Rev. 2007, 251, 2490. https://doi.org/10.1016/j.ccr.2007.07.009
  3. Ferey, G. Chem. Soc. Rev. 2008, 37, 191. https://doi.org/10.1039/b618320b
  4. Hong, M. C.; Zhao, Y. J.; Su, W. P.; Cao, R.; Fujita, M.; Zhou, Z. Z.; Albert, S. C. J. Am. Chem. Soc. 2000, 122, 4819. https://doi.org/10.1021/ja000247w
  5. Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158. https://doi.org/10.1021/ja993814s
  6. Zhao, X.; Xiao, B.; Fletcher, A.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012. https://doi.org/10.1126/science.1101982
  7. Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. -H.; Chang, J.-S.; Jhung, S. H.; Férey, G. Angew. Chem. Int. Ed. 2006, 45, 8227. https://doi.org/10.1002/anie.200600105
  8. Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G. Angew. Chem. Int. Ed. 2008, 47, 4144. https://doi.org/10.1002/anie.200705998
  9. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank J.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G. Nat. Mater. 2010, 9, 172. https://doi.org/10.1038/nmat2608
  10. Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Int. Ed. 2004, 43, 2334. https://doi.org/10.1002/anie.200300610
  11. Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvag, H. Chem. Commun. 2006, 959.
  12. Dietzel, P. D. C.; Johnsen, R. E.; Blom, R.; Fjellvag, H. Chem. Eur. J. 2008, 14, 2389. https://doi.org/10.1002/chem.200701370
  13. Vitillo, J. G.; Regli, L.; Chavan, S.; Ricchiardi, G.; Ricchiardi, G.; Spoto, G.; Dietzel, P. D. C.; Bordiga, S.; Zecchina, A. J. Am. Chem. Soc. 2008, 130, 8383.
  14. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. https://doi.org/10.1021/ja8036096
  15. Dietzel, P. D. C.; Johnsen, R. E.; Fjellvag, H.; Bordiga, S.; Groppo, E.; Chavan, S.; Blom, R. Chem. Commun. 2008, 5125.
  16. Mckinlay, A. C.; Xiao, B.; Wragg, D. S.; Wheatley, P. S.; Megson, I. L.; Morris, R. E. J. Am. Chem. Soc. 2008, 130, 10440. https://doi.org/10.1021/ja801997r
  17. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 122, 1504.
  18. Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J.-S. Adv. Funt. Mater. 2009, in press.
  19. Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S. Microporous Mesoporous Mater. 2009, 119, 331. https://doi.org/10.1016/j.micromeso.2008.10.035
  20. Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, Y.-U.; Jhung, S. H.; Hwang, J.-S.; Park, M. S. Angew. Chem. Int. Ed. 2005, 44, 556. https://doi.org/10.1002/anie.200461403
  21. Komarneni, S.; Rajha, R. K.; Katuski, H. Mater. Chem. Phy. 1999, 61, 50. https://doi.org/10.1016/S0254-0584(99)00113-3
  22. Tompsett, G.; Conner, W. C.; Yngvesson, K. S. Chem. Phys. Chem. 2006, 7, 296.
  23. Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J.-S. Catal. Survey Asia 2004, 8, 91. https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  24. Hwang, Y. K.; Chang, J.-S.; Kwon, Y.-U.; Park, S.-E. Micropor. Mesopor. Mater. 2004, 68, 21. https://doi.org/10.1016/j.micromeso.2003.12.004
  25. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280. https://doi.org/10.1039/b309142b
  26. Hwang, Y. K.; Jin, T.-H.; Kim, J. M.; Kwon, Y.-U.; Park, S.-E.; Chang, J.-S. J. Nanosci. Nanotechnol. 2006, 6, 1786. https://doi.org/10.1166/jnn.2006.236
  27. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Serre, C.; Ferey, G.; Chang, J.-S. Adv. Mater. 2007, 19, 121. https://doi.org/10.1002/adma.200601604
  28. Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Chem. Eur. J. 2010, 16, 1046. https://doi.org/10.1002/chem.200902382
  29. Jhung, S. H.; Lee, J.-H.; Forster, P. M.; Férey, G.; Cheetham, A. K.; Chang, J.-S. Chem. Eur. J. 2006, 12, 7899. https://doi.org/10.1002/chem.200600270
  30. Khan, N. A.; Jhung, S. H. Crystal Growth Des. 2010, 10, 1860. https://doi.org/10.1021/cg901562d
  31. Ni, Z.; Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394. https://doi.org/10.1021/ja0635231
  32. Khan, N. A.; Haque, E.; Jhung, S. H. Phys. Chem. Chem. Phys. 2010, 12, 2625. https://doi.org/10.1039/b921558a
  33. Parnham, E. R.; Morris, R. E. Acc. Chem. Res. 2007, 40, 1005. https://doi.org/10.1021/ar700025k
  34. Kesanli, B.; Lin, W. B. Coord. Chem. Rev. 2003, 246, 305. https://doi.org/10.1016/j.cct.2003.08.004
  35. Cheethan, A. K.; Rao, C. N. R.; Peller, R. K. Chem. Commun. 2006, 4780.
  36. Muller, U.; Schubert, M. M.; Teich, F.; Puetter, H.; Schieeric-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626. https://doi.org/10.1039/b511962f
  37. Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev. 2007, 36, 770. https://doi.org/10.1039/b501600m
  38. Muller, U.; Schubert, M. M.; Yaghi, O. M. Handbook of Heterogeneous Catalysis; Knozinger, Ertl. H., Schuth, F., Weitkamp, J., Eds.; Wiley-VCH: 2008; p 247.
  39. Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Kim, H. S.; Jhung, S. H.; Serre, C.; Ferey, G. Appl. Catal. A 2009, 358, 249. https://doi.org/10.1016/j.apcata.2009.02.018
  40. Ferey, G. Chem. Soc. Rev. 2008, 37, 191. https://doi.org/10.1039/b618320b
  41. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. https://doi.org/10.1038/35010088
  42. Wu, C.-D.; Lin, W. Angew. Chem. Int. Ed. 2007, 46, 1075. https://doi.org/10.1002/anie.200602099
  43. Alaerts, L.; Seguin, E.; Poelman, Thibault-Starzyk, H.; F.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2006, 12, 7353. https://doi.org/10.1002/chem.200600220
  44. Jhung, S. H.; Lee, J.-H.; Cheetham, A. K.; Férey, G.; Chang, J.-S. J. Catal. 2006, 239, 97. https://doi.org/10.1016/j.jcat.2006.01.020

피인용 문헌

  1. Metal–organic frameworks as heterogeneous catalysts for oxidation reactions vol.1, pp.6, 2011, https://doi.org/10.1039/c1cy00068c
  2. Synthetic methods Part (II): oxidation and reduction methods vol.107, pp.1460-4779, 2011, https://doi.org/10.1039/c1oc90012a
  3. Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3) vol.2012, pp.16, 2012, https://doi.org/10.1002/ejic.201101099
  4. Functionalized mesoporous silica supported copper(ii) and nickel(ii) catalysts for liquid phase oxidation of olefins vol.40, pp.46, 2011, https://doi.org/10.1039/c1dt10157a
  5. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites vol.112, pp.2, 2012, https://doi.org/10.1021/cr200304e
  6. Commercial metal–organic frameworks as heterogeneous catalysts vol.48, pp.92, 2012, https://doi.org/10.1039/c2cc34329k
  7. A 2D → 3D Polycatenated Metal-Organic Framework: Synthesis, Structure, Magnetic and Catalytic Study vol.2013, pp.17, 2013, https://doi.org/10.1002/ejic.201300123
  8. vol.2013, pp.29, 2013, https://doi.org/10.1002/ejic.201300560
  9. Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts vol.56, pp.1, 2014, https://doi.org/10.1080/01614940.2014.864145
  10. Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures vol.17, pp.29, 2015, https://doi.org/10.1039/C5CE00848D
  11. Nanocrystalline M-MOF-74 as Heterogeneous Catalysts in the Oxidation of Cyclohexene: Correlation of the Activity and Redox Potential vol.7, pp.4, 2015, https://doi.org/10.1002/cctc.201402927
  12. vol.8, pp.40, 2016, https://doi.org/10.1021/acsami.6b08851
  13. 2D Co-based coordination polymer with a histidine derivative as an efficient heterogeneous catalyst for the oxidation of cyclohexene vol.19, pp.15, 2017, https://doi.org/10.1039/C7CE00349H
  14. Optimization of polishing parameters for optical coupler based on side-polished photonic crystal fiber vol.49, pp.2, 2017, https://doi.org/10.1007/s11082-017-0906-x
  15. (BPY)–MOF: an efficient and reusable heterogeneous catalyst for the aerobic Chan–Lam coupling prepared via ball-milling strategy vol.7, pp.73, 2017, https://doi.org/10.1039/C7RA09772G
  16. Novel Lanthanide Coordination Polymers Prepared by Microwave Heating: [Ln(L)3(H2O)2](H2O)3 (Ln = Eu, Tb, Gd; L = trans-(3-py)-CH=CH-COO) vol.33, pp.6, 2010, https://doi.org/10.5012/bkcs.2012.33.6.2017
  17. The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties vol.157, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2011.12.035
  18. Nitrogen Doped Carbon Nanosheets Coupled Nickel-Carbon Pyramid Arrays Toward Efficient Evolution of Hydrogen vol.1, pp.8, 2017, https://doi.org/10.1002/adsu.201700032
  19. Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments vol.352, pp.None, 2010, https://doi.org/10.1016/j.ccr.2017.09.014
  20. Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO2 Efficient Capture vol.58, pp.4, 2010, https://doi.org/10.1021/acs.inorgchem.8b03271
  21. Facile synthesis of Ni-MOF using microwave irradiation method and application in the photocatalytic degradation vol.6, pp.11, 2010, https://doi.org/10.1088/2053-1591/ab5261
  22. A Comparative Study of Different Synthetic Methods of Copper Metal-Organic Frameworks (Cu-MOF) vol.33, pp.10, 2010, https://doi.org/10.14233/ajchem.2021.23323
  23. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications vol.281, pp.None, 2010, https://doi.org/10.1016/j.chemosphere.2021.130717