DOI QR코드

DOI QR Code

3D-QSAR Study on the Influence of Alrylamino (R) Substituents on Herbicidal Activity of Thiourea Analogues

  • Soung, Min-Gyu (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Park, Kwan-Yong (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • Received : 2009.12.02
  • Accepted : 2010.01.11
  • Published : 2010.06.20

Abstract

Influences of alrylamino (R) substituents on the herbicidal activity ($pI_{50}$) of 1-(4-chloro-2-fluoro-5-propargyloxypheny)-3-(R)-thiourea analogues (1 ~ 35) against the barnyard grass (Echinochloa crusgalli) in the pre-emergence step were discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) as the three dimensional quantitative structure-activity relationship (3D-QSAR) method. The statistically most satisfactory CoMFA models for the herbicidal activity against the barnyard grass had the better predictability ($r^2{_{cv.}}$) and correlativity ($r^2{_{ncv.}}$) than those of CoMSIA models. The optimized CoMFA model 1($r^2{_{cv.}}$ = 0.531 & $r^2{_{ncv.}}$ = 0.931) with the sensitivity to the perturbation (${d_q}^{2'}{dr^2}_{yy'}$ = 1.081) and the prediction ($q^2$ = 0.475) produced by a progressive scrambling analyses were not dependent on chance correlation. And statistical qualities with the atom based fit alignment (AF) were slightly higher than those of the field fit alignment (FF). According to the optimized CoMFA model 1, the contribution ratio (%) of the steric field (76.9%) on the herbicidal activity of the Thioureas was three-fold higher than that of the electrostatic field (20.1%) and the hydrophobic field (3.0%) had the least influence. A steric favor group is on the vicinity of the nitrogen atom in alrylamino (R) substituent, and a steric disfavor group is on the outer side of alrylamino (R) substituent. Thus, as the size of alrylamino (R) substituent increases, so does the herbicidal activity of the substituent.

Keywords

References

  1. Fujita, T.; Nakayama, A. In Peroxidizing Herbicides: Structureactivity relationship and molecular design of peroxidizing herbicides with cyclic imide structures and their relatives; Boger, P., Wakabayashi, K. Eds.; Springer-Verlag Berline: Heidelberg, Germany, 1999; Ch. 4.
  2. Wan, J.; Zhang, L.; Yang, G.; Zhan, C. G. J. Chem. Inf. Comput. Sci. 2004, 44, 2099. https://doi.org/10.1021/ci049793p
  3. Hiraki, M.; Ohki, S.; Sato, Y.; Jablonkai, I.; Boger, P.; Wakabayashi, K. Pestic. Biochem. Physiol. 2001, 70, 159. https://doi.org/10.1006/pest.2001.2552
  4. Murata, S.; Kimura, Y.; Mabuchi, T.; Miura, Y. J. Pestic. Sci. 2004, 29, 195. https://doi.org/10.1584/jpestics.29.195
  5. Theodoridis, G.; Bahr, J. T.; Hotzman, F. W.; Sehgel, S.; Suarez, D. Crop. Protection 2000, 19, 533. https://doi.org/10.1016/S0261-2194(00)00069-7
  6. Uraguchi, R.; Sato, Y.; Nakayama, A.; Sukekaya, M.; Iwataki, I.; Boger, P.; Wakaba- yashi, K. J . Pesticide Sci. 1997, 22, 314. https://doi.org/10.1584/jpestics.22.314
  7. Selby, T. P.; Armel, G. R.; Hughes, K. A.; Chen, Y.; Xu, M.; Stevenson, T. M.; Kamireddy, B. ; Mauvais, P. A. Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 2008.
  8. Nandihalli, U. B.; Duke, M. Y.; Duke, S. O. Pestic. Biochem. Physiol. 1992, 43, 193. https://doi.org/10.1016/0048-3575(92)90033-V
  9. Luo, Y. P. ; Jiang, L. L.; Wang, G. D.; Chen, Q.; Yang, G. F. J. Agri. Food Chem. 2008, 56, 2118. https://doi.org/10.1021/jf703654g
  10. Matsumoto, H. Herbicide Modes of Action, Recent Progress and New Challenges Proceeding of the 17th Asian-Pacific Weed Science Society Conference; 2000; p 39.
  11. Boger, P., Wakabayashi, K., Eds.; In Peroxidizing Herbicides; Springer-Verlag Berline: Heidelberg, Germany, 1991; p 44.
  12. Scalla, R.; Matringe, M.; Camadro, J. M.; Labbe, P. Z. Naturforsch. 1990, 45c, 503.
  13. Sung, N. D.; Yoon, T. Y.; Chung, H. S. Korean J. Pestic. Sci. 2005, 9, 146.
  14. Soung, M. G.; Lee, Y. J.; Sung, N. D. Bull. Korean Chem. Soc. 2009, 30, 613. https://doi.org/10.5012/bkcs.2009.30.3.613
  15. Sung, N. D.; Kang, E. K.; Song, J. H.; Jung, H. S. Korean J. Pestic. Sci. 2005, 9, 199.
  16. Sung, N. D.; Kang, E. K.; Song, J. H.; Jung, H. S. J. Korean Soc. Appl. Biol. Chem. 2005, 48, 394.
  17. Sung, N. D.; Jung, K. S.; Jung, H. S.; Chung, Y. H. Korean J. Pestic. Sci. 2006, 10, 1.
  18. Chung, K. S.; Jang, S. C.; Choi, K. S.; Sung, N. D.; J. Korean Soc. Appl. Biol. Chem. 2006, 49, 238.
  19. Akamatsu, M. Curr. Topics Med. Chem. 2002, 2, 1381. https://doi.org/10.2174/1568026023392887
  20. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  21. Cramer, R. D., III.; Wold, S. CoMFA US Patent application No. 237491, August 1988.
  22. Park, K. Y.; Song, J. H.; Jeon, D. J.; Soung, M. G.; Sung, N. D. Korean J. Pestic. Sci. 2008, 12, 103.
  23. Soung, M. G.; Park, K. Y.; Song, J. H.; Sung, N. D. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 219.
  24. Tripos, Sybyl. Molecular modeling and QSAR software on CD-Rom (Ver. 8.0), Theory and manual, Triopos Associates, Inc., Suite 303, St. Louis, MO.
  25. Gilbert, K. M.; Venanzi, C. A. J. Comput. Aided -Mol. Des. 2006, 20, 209. https://doi.org/10.1007/s10822-006-9046-2
  26. Clark, M.; Cramer, R. D. III.; Van Opdenbosch, N. J. Comput. Chem. 1989, 10, 982. https://doi.org/10.1002/jcc.540100804
  27. Klebe, G. In 3D-QSAR Drug Design, Theory, Methods and Applications: Structural Alignment of Molecules; Kubinyi, H., Ed.; 1993; p 173.
  28. Cramer, R. D.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18. https://doi.org/10.1002/qsar.19880070105
  29. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  30. Wold, S.; Ruhe, A.; Wold, H. ; Dunn, W. J. SIAM J. Sci. Stat. Comp. 1984, 5, 735. https://doi.org/10.1137/0905052
  31. Gaillard, P.; Carrupt, P.A.; Testa, B.; Boudon, A. J. Comput. -Aided. Mol. Des. 1994, 8, 83. https://doi.org/10.1007/BF00119860
  32. Wade, R. C. Structure 1977, 5, 1139. https://doi.org/10.1016/S0969-2126(97)00265-7
  33. Clark, R. D.; Fox, P. C. J. Comput. -Aided. Mol. Des. 2004, 18, 563. https://doi.org/10.1007/s10822-004-4077-z
  34. Klebe, G.; Abraham, U. J. Comput. -Aided. Mol. Des. 1999, 13, 1. https://doi.org/10.1023/A:1008047919606
  35. Clark, R. D.; Fox, P. C. J. Comput. -Aided. Mol. Des. 2003, 17, 1. https://doi.org/10.1023/A:1024562326498
  36. Clark, R. D.; Sprous, D. G.; Leonard, J. M. Validating Models based on Large Data Sets; Prous Science: Barcelona, 2001; p 475.

Cited by

  1. Substituted-nicotinyl thiourea derivatives bearing pyrimidine moiety: synthesis and biological evaluation vol.37, pp.6, 2011, https://doi.org/10.1007/s11164-010-0235-1
  2. A perspective on the role of quantitative structure-activity and structure-property relationships in herbicide discovery vol.68, pp.4, 2012, https://doi.org/10.1002/ps.3256
  3. High Add Valued Application of Turpentine in Crop Production through Structural Modification and QSAR Analysis vol.23, pp.2, 2018, https://doi.org/10.3390/molecules23020356
  4. 3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1241