폴리우레탄 나노복합 발포체의 열적 성질 및 흡음 특성

Thermal Properties and Sound-Damping Characteristics of Polyurethane Nanocomposite Foams

  • 이준모 (부산대학교 고분자공학과) ;
  • 하창식 (부산대학교 고분자공학과)
  • Lee, Jun Mo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 투고 : 2009.07.02
  • 심사 : 2009.09.30
  • 발행 : 2010.03.30

초록

1,2-propanediol isobutyl polyhedral silsesquioxane 올리고머(POSS)를 사용하여 폴리우레탄 나노 복합 발포체를 제조하고, 유리전이온도, 난연성 등과 같은 열적 성질과 흡음 특성에 대해 고찰하였다. 소량의 POSS 입자 첨가 시에도 발포 폴리우레탄의 흡음 성능이 강화되는 것으로 나타났다.

Thermal properties, flame retardant property, and sound-damping properties of polyurethane (PU) nanocomposite foams prepared with oligomeric 1,2-propanediol isobutyl polyhedral silsesquioxane (POSS) were investigated. It was found that the PU nanocomposite foams showed good sound-damping performances comparing to the PU foams without POSS.

키워드

참고문헌

  1. R. Deng, P. Davies, and A. K. Bajaj, J. Sound. Vib., 262, 391 (2003). https://doi.org/10.1016/S0022-460X(03)00104-4
  2. K. C. Song, S. M. Lee, and D. H. Lee, Polymer (Korea), 25, 679 (2001).
  3. K. C. Song, S. M. Lee, and D. H. Lee, Polymer (Korea), 26, 218 (2002).
  4. M. J. Han and Y. H. Kwon, Polymer (Korea), 2, 204 (1978).
  5. S. R. Yoo, H. S. Lee, and S. W. Seo, Polymer (Korea), 21, 467 (1997).
  6. G. Harikrishnan, T. Umasankar Patro, and D. V. Khakhar, Ind. Eng. Chem. Res. 45, 7126 (2006). https://doi.org/10.1021/ie0600994
  7. X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46, 775 (2005). https://doi.org/10.1016/j.polymer.2004.11.028
  8. W. Zatorski, Z. K. Brzozowski, and A. Kolbrecki, Polym. Deg. Stab., 93, 2071 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.032
  9. M. Xu, T. Zhang, B. Gu, J. Wu, and Q. Chen, Macromolecules, 39, 3540 (2006). https://doi.org/10.1021/ma052265+
  10. R. Herrington and K. Hock, Flexible Polyurethane Foams, Dow Plastics, 12, 12 (1991).
  11. J. J. Zwinselman and J. J. Laux, Polym. Mater. Sci. Eng., 60, 827 (1989).
  12. S. Turri and M. Levi, Macromolecules, 38, 5569 (2005). https://doi.org/10.1021/ma047304g
  13. A. J. Waddon and E. B. Coughlin, Chem. Mater., 15, 4555 (2003). https://doi.org/10.1021/cm034308b
  14. B. X. Fu, W. Zhang, B. S. Hsiao, M. Rafailovich, J. Sokolov, G. Johansson, B. B. Sauer, S. Phillips, and R. Balnski, High Perform. Polym., 12, 565 (2000). https://doi.org/10.1088/0954-0083/12/4/311
  15. R. K. Bharadwaj, R. J. Berry, and B. L. Farmer, Polymer, 41, 7209 (2000). https://doi.org/10.1016/S0032-3861(00)00072-0
  16. J. Choi, J. Harcup, A. F. Yee, Q. Zhu, and R. M. Laine, J. Am. Chem. Soc., 123, 11420 (2001). https://doi.org/10.1021/ja010720l
  17. H. Park, A. K. Mohanty, L. T. Drzal, E. Lee, D. F. Mielewski, and M. Misra, J. Polym. Environ., 14, 27 (2006). https://doi.org/10.1007/s10924-005-8704-0
  18. C. H. Sung, K. S. Lee, K. S. Lee, S. M. Oh, J. H. Kim, M. S. Kim, and H. M. Jeong, Macomol. Res., 15, 443 (2007). https://doi.org/10.1007/BF03218812
  19. F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta, and Ph. Dubois, Mater. Sci. Eng. R, 63, 100(2009). https://doi.org/10.1016/j.mser.2008.09.002