Abstract
The distance distribution in our planetary system has been a controversial matter. Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. We have examined, by applying it to exo-planetary systems, whether Titius-Bode's relation is exclusively applicable to our solar system. We study, with the $X^2$ test, the distribution of period ratios of two planets in multiple planet systems by comparing it with that derived from not only Titius-Bode's relation but also other forms of it. The $X^2$ value between the distribution of the orbital period derived from Titius-Bode's relation and that observed in our Solar system is 12.28 (dof=18) with high probability, i.e., 83.3 %. The value of $X^2$ and probability resulted from Titius-Bode's relation and observed exo-planetary systems are 21.38 (dof=26) and 72.2 %, respectively. Modified forms we adopted seem also to agree with the planetary system as favorably as Titius-Bode's relation does. As a result, one cannot rule out the possibility that the distribution of the ratio of orbiting periods in multiple planet systems is consistent with that derived from Titius-Bode's relation. Having speculated Titius-Bode's relation could be valid in exo-planetary systems, we tentatively conclude it is unlikely that Titius-Bode's relation explains the distance distribution in our planetary system due to chance. Finally, we point out implications of our finding.