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A Content Adaptive Fast PDE Algorithm for Motion
Estimation Based on Matching Error Prediction

Sangkeun Lee and Eunjeong Park

Abstract: This paper introduces a new fast motion estimation based
on estimating a block matching error (i.e., sum of absolute differ-
ence (SAD)) between blocks which can eliminate an impossible can-
didate block much earlier than a conventional partial distortion
elimination (PDE) scheme. The basic idea of the proposed scheme
is based on predicting the total SAD of a candidate block using its
partial SAD. In particular, in order to improve prediction accuracy
and computational efficiency, a sub-sample based block matching
and a selective pixel-based approaches are employed.

In order to evaluate the proposed scheme, several baseline ap-
proaches are described and compared. The experimental results
show that the proposed algorithm can reduce the computations by
about 44% for motion estimation at the cost of 0.0005 dB quality
degradation versus the general PDE algorithm.

Index Terms: Block matchng, motion estimation (ME), partial dis-
tortion elimination (PDE), sub-sampling.

I. INTRODUCTION

Motion estimation (ME) is defined by finding motion vectors
referring pixels from reference(s) to a current frame (detail re-
view reports can be found in [1]-[3]). The ME is widely used to
compress the motion pictures for removing the temporal redun-
dancies effectively. Therefore, many researchers have been fo-
cused on the approaches to find motion vectors fast and accurate
while they keep the quality of pictures when they are decoded.
The so-called “block-matching algorithms™ are the most impor-
tant of estimation methods, especially in coding schemes based
on discrete cosine transform including MPEG-x and H.26x.

A full search (FS) algorithm [4] is an optimal block matching
method to find best motion vectors but it requires heavy compu-
tations. Therefore, several alternative and faster techniques have
been developed to reduce computational complexity by pruning
the search space (fast searching) with respect to the FS method
or reducing the number of pixels considered (fast matching) dur-
ing block matching between original and candidate blocks. In
this paper, we only focus on fast matching algorithms.

In fast matching algorithms, the lossy approach aims at reduc-
ing the sum of absolute difference (SAD) computation time for
each candidate block by testing only part of pixels in the block at
the cost of coding quality [5]-[7]. Recently, a prediction-based
algorithm has been introduced [8] and reported that it could save
the computation cost considerably. However, it is not guaran-
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teed that the prediction is correct because a prediction at a can-
didate block depends on its neighboring blocks instead of its
own contents. The lossless fast matching approach is more at-
tractive because it is fast processing without any loss in quality
of the coded image. Partial distortion elimination (PDE) [9] is a
good example of the fast matching scheme. Main advantage of
this approach is to discard impossible candidates earlier before
complete SAD computation for the whole candidate blocks. For
this efficiency, many improved approaches [10]-[12] have been
proposed and reported good results. More detailed descriptions
can be found in Section IV. However, the improved PDE ap-
proaches still requires heavy load for SAD computations and
time to eliminate a candidate block at the final stage if it is very
similar to a original block but not the optimal block.

This paper is based on a previous work [8] of a prediction-
based fast motion estimation. However, we employ two new
main factors which are a sub-sampling based error prediction
and a selective pixel-based error comparison for improving the
prediction accuracy but reducing the computational cost, re-
spectively. A sub-sampling based block, which is a subblock,
in this paper consists of the pixels values selected from the
sub-sampled pixel locations in a given block. The sub-sampling
scheme is used for stably estimating a matching error prediction
that may be caused by performing sequential neighbor pixels,
lines, or sub-blocks in a block. And the selective pixel-based
matching error comparison is used for avoiding the unnecessary
computations with line or block-based comparisons. In this pa-
per, we focus on lossy matching procedures even though their
quality degradation is negligible and introduce a method to re-
duce computations for a conventional PDE algorithm without
significant changes.

The main advantages of this scheme are that 1) it can elim-
inate an impossible candidate block even though a total SAD
between an original and a candidate blocks is not completed,;
2) the algorithm can reduce the computational cost consider-
ably for SAD calculation; and 3) conventional approaches can
be improved by using the proposed scheme without changing
the algorithms significantly.

In this paper, conventional PDE approach for ME is reviewed
in Section II. In Section III, an error prediction based PDE al-
gorithm for improving the prediction accuracy and for speeding
up the PDE is introduced. Competitive experimental results are
iltustrated and compared with four baseline systems including
our previous approach in Section IV. And we conclude the fast
PDE scheme in Section V.

II. BACKGROUND

The basic concepts used in this paper are briefly reviewed.
More details can be found in [8].
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Fig. 1. Overall procedures for PDE and the proposed algorithms.

A. Motion Estimation

ME processing for an original block, whose size in this paper
is NxN, located at any position p = [p, py]T in an image is
to find out the best matching candidate block located at mv =
[mu, mvy]T in a given search range R in another image by
using SAD criterion as follows:

SAD(p,mv') = min SAD(p,mv) (1)

where mv’ is an optimal motion vector in R, and the SAD is
expressed by
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where f; and f;_; indicate current and reference frames, respec-
tively.

B. PDE Algorithm

A block diagram without blocks in the solid dashed box is il-
lustrated for a conventional PDE algorithm in Fig. 1. It is noted
that this paper follows a spiral scanning path for searching a
matching block [10] and sets the SAD of a candidate block lo-
cated at the center of an given search range (mv = [0 0]7) to
the initial matching error (SAD) because the SAD has a high
possibility to be a minimum error SADy,;,. The partial SAD
accumulated up to kth line of a block by using the spiral scan-
ning order can be defined by
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where P(muv) is a reordered location according to the spifal
scanning path. Therefore, the ME processing with PDE ap-
proach can be formulated by

SAD(p,mv') = min, pSADN"1(p, P(mv)).  (4)

The S AD,,;y is updated if necessary until a given search range
R is scanned completely for an original block.

ITI. PREDICTION BASED FAST PDE ALGORITHM

The disadvantage of the conventional PDE scheme is that the
algorithm has to compute partial SAD of an impossible candi-
date block, which will be eliminated, until the SAD reaches the
minimum SAD. It is obvious that predetermination of the elim-
ination will help in reducing the computations and in accelerat-
ing the speed of ME. For this purpose, we proposed a prediction
scheme of the total block matching error 6S AD from the partial
SAD pS ADF by using Taylor series expansion [8]. The predic-
tion scheme is based on the relationship between a partial block
SAD and its total block SAD that the partial SAD has a random
value and is gradually increased to the total block SAD as the
computation goes [8], [10]. First, we estimated a partial SAD
pSAD™ at the nth line by using the partial SAD pSADF accu-
mulated up to the kth line of original and candidate blocks as
follows:

pSAD"™(p, P(mv)) ~pSAD*(p, P(mv))

| 9pSAD (p, P(mv))
ok

for0 < k < n < N—1, and an original and candidate blocks are
located at p and p + P(mv) in a current and a reference frames,
respectively. It is easily seen that the proposed prediction de-
pends on the gradient of the partial SAD. (5) indicates that the
prediction has a high probability to reach the S A Dy, faster and
to save the SAD computations when the gradient of a pSAD*
is big. However, a big SAD represents a big block matching er-
ror and may result in degrading the accuracy of the proposed
scheme because the prediction scheme in (5) is not performed
correctly with the erroneous information. Therefore, the second
term on the right side of the above align needs to be adjusted
adaptively according to the contents and complexity of its orig-
inal block. In order to approximate the contents of a block even
at the beginning of a prediction, we replace the block matching
scheme in (3) with a sub-sampling based scheme as follows:

(n—k) (5
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where M is N/4 — 1, a block is separated into 16 sub-sampled
blocks, and i and 7 indicate a starting point of each sub-sample
block for 0 < 4,7 < M. It is noted that any additional opera-
tions for sub-sampling based matching is not required since the
locations of each pixel can be predetermined. For more robust
estimation, we also reflect the neighboring SADs. Finally, the
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content-reflected SAD estimation for a whole block p_bSAD is
defined with a weighting factor w by

p_bSAD(p, P(mv))
=pSADYN (p, P(mv))

ApS AD*(p, P(mw))
ok

~pSAD*(p, P(mv)) + (N-1-kw

)
for 0 < k < N — 1. The weighting factor is employed for

taking the neighboring blocks’ complexities into account and it
is computed by

14
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where w is an average value of neighboring S AD,;,,s including
an initial SAD wy at the current location p. The neighborhood
consists of available upper left wy, upper wa, upper right ws and
left block w4. And the weighting function g{x) is defined by

1, if X <7
Ta—T1 (X - Tl) + 17
0, otherwise.

glx) = form < x <7

®

Here, parameters 71 and 7 indicate the first and second thresh-
olds of a fuzzy-like function, respectively. It is noted that the
estimated SAD without considering neighboring blocks may be
unstable especially around object boundaries.

Algerithm: We present the whole procedures of the proposed
algorithm in Fig. 1.

1) We compute a SAD between original and candidate blocks
at the location P(mv) = [0 0]7 € R using (2), and set
the SAD initially to the minimum SAD SAD ;.. Next, a
weighting factor w in (8) is obtained from the initial SAD
and four neighboring available SADs. Then, the algorithm
goes to Step 2 for the next candidate block on a spiral scan-
ning path by setting k to zero (k = 0).

2) We perform PDE for computing a partial SAD pSAD¥
of the block using (6) and compare the pSAD* with the
S AD i, to find out the smallest matching error using {4).
If the pS AD* is bigger than the SAD ., then the current
candidate block is skipped and the algorithm repeats this
step for the next candidate block, or it goes back to Step 1
for the next original block when it finishes the given search
range. Otherwise, it goes to Step 3.

3) We predict a total block SAD p_bSAD using (7). Next,
we compare the p_bSAD with the SAD,.;,. If the
p_bSAD is bigger, then the algorithm goes to Step 2 for
the next candidate block. Otherwise it goes to Step 2 with
k = k4 1. When it reaches the end of the matching range,
the S A Dy, is replaced with the partial SAD pSADF (ac-
tually, now it is the total SAD between the original and the
candidate blocks), and the algorithm goes to Step 1 for the
next available original block.

It is worth noting that each weighting factor w for each original
block is computed once during an initial minimum SAD com-

putation for the block (see more details for a practical example
in {81]).

More computational improvement: The most critical part of
PDE approaches is to find out earlier if a candidate block can
be rejected or not. For a simple explanation, we describe how
to save more computations with a conventional PDE because
it can be easily extended to the proposed sub-sampled matching
scheme. Basically, from (3), the matching error (SAD) computa-
tion is line-by-line basis. It means that we can not determine un-
til the computation is completed for a line even though a pS A DF
is larger than S A D,,;;,, during the corputation. Itis true that the
pSADF is getting increased as the computation goes. Therefore,
we can modify (3) with the following pixel-based comparison

pSAD* (p, P(mv))
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for 0 < k,k; < N ~ 1. Similarly, (6) is formulated as follows:
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for 0 < ky,ky < M. However, a problem in the pixel-based
comparison scheme is that this requires a comparison operation
every pixel and gives a big computational burden to the algo-
rithm. In order to solve the problem, we perform a selective
pixel-based comparison only when the complexity measure
of an original block is small enough (which is less than £ = %ﬁ
in practice). This strategy results in achieving more efficiency as
will be shown in Section IV for both the conventional PDE and
the proposed algorithms. To apply this procedure, we change the
matching error comparison scheme in Step 2 of the proposed al-
gorithm described above as follows:

2)* If the block complexity measure zo of the given original
block is bigger than the £ = %7’1, we follow the proce-
dures described in Step 2 of the sub-block-by-sub-block
comparison. Otherwise, we perform PDE for computing
a SAD of the block using (11) and compare the SAD at
each pixel location of the block with the SAD,;, to find
out the smallest matching error using (4). If the SAD is
bigger than the SAD,,;,, then the current candidate block
is skipped and the algorithm repeats this step for next can-
didate block, or it goes back to Step 1 for the next original
block when it finishes the given search range. Otherwise,
it goes to Step 3 when the current sub-sampled block is
finished (k;,ke = M), or repeats this step for the next
pixel of the sub-sampled block.

Using this selective pixel-based comparison scheme in a sub-
sampled block, we can save about 12% computations more that
will be shown in experimental results with the current settings.
It is obvious that we may save computations and process time
more with the selective pixel-based matching error comparison
as macro-block size and search range are getting bigger and big-
ger.



8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

IV. EXPERIMENTS

This section performs a series of experiments to demonstrate
the performance of the proposed algorithm and also compares
the results with those generated by other baseline algorithms.
In addition, the proposed scheme is applied to the conventional
PDE algorithm, and we show that it can save the computational
cost without significant changes. ‘

The proposed algorithm is simulated with various video
sequences—Akiyo, Container, Foreman, Mobile, News, Silent
voice, Coast guard, and Mother&daughter—and they consist of
300 frames at 30 Hz in the format of QCIF. In these sequences as
summarized in Table 1, Foreman, Mobile, and Coast guard have
big motions compared with other sequences whereas akiyo and
container are almost static sequences, and the remaining three
sequences, News, Silent voice, and Mother&daughter, have in-
termediate motions. The used searching method is spiral scan-
ning, the matching block size is 16 x 16 pixels, and the search
range is +7. By default, the parameters 77 and 72 in computing
weighting factor in (9) were empirically set to 300/(16 x 16)
and 900/(16 x 16), respectively, for consistency over all of the
tested sequences. In particular, SAD value was normalized by
the size of a block, and only the luminance component was used
in this experiment.

A. Existing Methods

In order to evaluate the performance of the proposed algo-
rithm, three other existing PDE algorithms [4], {11], [12] and
our previous method [8] are briefly described and are compared
with the proposed approach.

The first algorithm is a conventional PDE algorithm [4] that
can reject invalid candidate blocks earlier. SAD computation is
performed by (3).

The second baseline system is a fast PDE algorithm [11]
based on an adaptive matching scan by sorted sub-blocks. The
algorithm assumes that localization of image complexity with
small square sub-blocks can get a faster elimination of impossi-
ble candidates. The local complexity of the sub-block is defined
as a spatial complexity of image data for each sub-block and
measured with gradient magnitude.

A main difference between the sub-block in [11] and the sub-
sampled blocks in the proposed algorithm is that the sub-block is
a measure of the local spatial complexity while the sub-sampled
block is that of the global contents of a total block.

The third baseline algorithm is another fast PDE algo-
rithm [12] based on the reorder of pixels in a reference block
according to some measures at each pixel location. In [12], au-
thors proposed two algorithms which are called fast full search
with sorting by distortion (FFSSD) and fast full search with sort-
ing by gradient (FFSSG), respectively, in order to quickly dis-
card invalid blocks. It is reported that FFSSG had better results
in [12]. Therefore, we only evaluate the FFSSG scheme and re-
port its results.

The common procedure used in [11] and [12] is that the two
approaches reorder the matching scan order according to image
complexities. The main differences between two algorithms are
that: 1) The sorting is performed on the magnitude of the gradi-
ent of sub-blocks and on that of eight-neighboring pixels at each

pixel, respectively, in an original block at p; and 2) the compar-
ison between an original at p and a candidate at p + P(mv)
blocks is operated every 16 pixels (the size of a sub-block) and
is operated every 8 pixels, respectively. It is noted that counting
sort [13] is employed for a reordering the gradient magnitude as
mentioned in [12].

In order to evaluate the fast PDE techniques, we first com-
pare the result of the proposed algorithm with the baseline ap-
proaches including our previous scheme with respect to com-
putational costs, speed, and peak signal-to-noise ratio (PSNR).
Then, we show how much the baseline algorithms can be im-
proved by the proposed sub-sampled block and selective pixel-
based comparisons.

B. Experimental Results

In this experiment, ‘PDE [4], ‘SBPDE [11], ‘FFSSG [12],
‘Prediction [8],” and ‘Proposed’ are indicating the results of the
first, second, third baseline algorithms, our previous prediction-
based approach, and the proposed algorithm, respectively. It is
noted that the SBPDE and FFSSG algorithms require a gradi-
ent and a sorting computations of sub-blocks and neighboring
pixels, respectively, for each original block. However, we con-
sidered each occurred operation such as a multiplication as an
addition for simple comparison and expression. For an exam-
ple, a gradient computation with four neighborhood requires
four additions, four subiracts, and one division but we counted
all of the operations as nine additions in this paper. And the
proposed scheme requires one addition, one division, and two
multiplications to estimate a total block matching error if neces-
sary for the sub-sampled block based comparison and requires
one more comparison operation per pixel for the selective pixel-
based comparison scheme. Table 2 shows the required average
number of computations per pixel for each baseline algorithm
and the proposed algorithm. Four systems in the table show the
line or sub-block (every 8 or 16 pixels) based SAD computa-
tional performances while ‘Proposed’ is the result of the pro-
posed sub-sampling-based selective pixel comparison approach.
It is noted that a parenthesis if any in each column for each
sequence indicates a computational efficiency 7 to the conven-
tional PDE algorithm. The efficiency of the compared approach
versus the conventional PDE algorithm is defined by

PDE — CPDE
n= PDE x 100
where PDE and CPDE are the conventional PDE and the com-
pared algorithms, respectively. For an example, the result value
16.461 of SBPDE for the sequence #1 is the required average
operations per pixel to compute SAD while the value 4.230%
in a parenthesis is an efficiency to the PDE algorithm. It is eas-
ily seen that the proposed algorithm can reduce the computa-
tional cost by about 44%, 32%, 17%, and 10% versus PDE,
SBPDE, FFSSG, and prediction, respectively. It is interesting
that sequences containing complicated contents affects the per-
formance of sorting-based approaches more while the proposed
scheme is effective regardless of the scene contents. It is be-
cause the proposed selective pixel comparison scheme is more
efficient in the static sequences while the sub-sampled block
based matching scheme is more effective in the complicated

(12)
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Table 1. A set of test sequences.

Number || Sequence | Motion | Number | Sequence | Motion |
#1 Akiyo static #5 News intermediate
#2 Container | static #6 Silent voice intermediate
#3 Foreman big #7 Coast guard big
#4 Mobile big #8 Mother&daughter | intermediate

Table 2. Result comparisons with respect to computational costs per pixel and efficiency versus the conventional PDE.

Computations/pixel and efficiency (1)
Sequence || PDE[4] | SBPDE[11] [ FFSSG[12] [ Prediction [8] |  Proposed
#1 17.188 | 16.461 (4.230) | 15.771 (8.244) | 13.675(20.439) | 9.523 (44.596)
#2 31.817 | 26.184 (17.704) | 23.378 (26.524) | 15.538 (51.165) | 14.381 (54.800)
#3 53.883 | 45.745(15.103) | 41.928 (22.187) | 39.613 (26.484) | 33.667 (37.518)
#4 46.677 | 39.870 (14.583) | 35.005 (25.006) | 30.458 (34.747) | 24.291 (47.959)
#5 25.882 | 21.064 (18.615) | 19.496 (24.674) | 19.280 (25.510) | 14.755 (42.989)
#6 27750 | 27.233 (1.863) | 26.353 (5.034) | 21.187 (23.650) | 20.847 (24.876)
#7 42.977 | 37.804 (12.037) | 34.684 (19.296) | 27.200 (36.711) | 24.488 (43.020)
#8 41.347 | 34.184 (17.324) | 30.494 (26.249) | 19.607 (52.579) | 17.005 (58.873)
| Average [ 35.940 | 31.068 (12.682) | 27.637 (19.652) | 23.320 (33.911) | 19.870 (44.329) |

Table 3. Encoding time speed up versus the conventional PDE.

Encoding time per picture [msec] and efficiency ()

FFSSG [12]

| Prediction [8] \

Proposed

3.763 (—156.860)

1.254 (14.403)

1.151 (21.433)

5.538 (—120.813)

1411 (43.740)

1.565 (37.600)

8.987 (—123.169)

3.502 (13.037)

3.552 (11.795)

7893 (—122.213)

2.823 (20.524)

2.666 (24.944)

4.756 (—133.137)

1.722 (15.588)

1.672 (18.039)

6.060 (—182.649)

1.933 (9.841)

1.913 (10.774)

7.682 (—133.424)

2.508 (23.792)

2.532 (23.063)

6.900 (—116.505)

1.776 (44.274)

1.796 (43.646)

bequenoe PDE [4] [ SBPDE [11] ]|
#1 1.465 1.361 ( 7.099)
#2 2.508 1.987 (20.774)
#3 4.027 3.344 (16.961)
#4 3.552 2.926 (17.624)
#5 2.040 1.672 (18.039)
#6 2.144 2.090 (2.519)
#7 3.291 2.823 (14.221)
#8 3.187 2.562 (19.611)

| Average [ 2777

[ 2.346 (14.606) | 6.447 (—136.096) | 2.116 (23.150) | 2.106 (23.912) |

sequences. Therefore, in order to see how much the proposed
schemes can affect the performance of the common PDE algo-
rithms, we apply these two schemes without a prediction to the
conventional PDE. The enhanced PDE, which is lossless as well,
outperform the conventional PDE by about 12% computational
efficiency.

In order to evaluate how much each algorithm can speed up
the picture encoding time versus the conventional PDE algo-
rithm, the elapsed time for encoding each sequence is shown in
Table 3. It is seen that the proposed algorithm outperforms the
PDE and the SBPDE algorithms by about 23% and 9%, respec-
tively, in the picture coding time. The encoding time of FFSSG
takes longer than those of PDE and SBPDE approaches even
though it has less computations per pixel as in Table 2. It is re-
alized that most of its encoding time is consumed to compute
the gradients with eight neighbors at each pixel of a block and
to sort them according to their contributions to SAD. In order to
resolve these problems, authors in [12] tried to optimize those
procedures by using bit-operations and hashing tables, respec-
tively. However, we did not consider those optimizations in our
implementation for the given comparison.

Now, a coding quality evaluation is performed on the results

of pictures coded by the proposed algorithm, which is a lossy
PDE approach even though the degradation is negligible as il-
lustrated below. Table 4 shows a quality measure PSNR, which
is the left half of the table, and the matched motion vector ratio
to the PDE algorithm, which is in the right half of the table. In
Table 4, ‘Matched MV’ indicates the percentage that matches
the motion vector (MV) of the proposed algorithm to that of the
conventional PDE approach. From the observation of the table,
we can see that the proposed algorithm keeps almost same qual-
ity as the PDE algorithm even though there is ignorable degra-
dation —0.0005 dB on average, and the motion vectors of the
proposed algorithm are matched 99.47% average for the set of
test sequences.

V. SUMMARY AND DISCUSSION

This paper proposed a scheme can reduce the computational
costs while it can keep the image quality. In this paper, we esti-
mated a total block SAD with using the partial SAD, determined
if a candidate block can be eliminated earlier than the conven-
tional PDE, and saved the computation cost considerably. For
the estimation, we formulated the block matching process in a
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Table 4. Comparisons with respect to PSNR and matched motion vectors to the PDEs,

PSNR [dB] Matched MV[%]}]
Sequence PDE | The proposed The proposed versus PDE
#1 44.296 | 44.296 (0.0000) 100.0000
#2 43.027 | 43.027 (—0.0001) 98.8109
#3 32.064 | 32.063 (—0.0009) 98.6082
#4 26.009 | 26.009 (0.0000) 100.0000
#5 36.235 | 36.234 (—0.0007) 99.9291
#6 35.003 | 35.002 (—0.0003) 99,9628
#7 32.483 | 32.483 (0.0000) 100.0000
#8 41.156 | 41.154 (—0.0023) 98.4157
| Average H 36.284 | 36.283 (—0.0005) } 99.4658

block with Taylor series expansion, predicted a total block SAD
from a partial block SAD. This paper introduced and combined
two schemes based on a sub-sampled block and a selective pixel-
to-pixel comparison schemes for the total block error prediction,
and we could reduce the computational costs by 44% versus the
conventional PDE algorithm for fast motion estimation at the
cost of negligible image quality degradation —0.0005 dB. And
we also verified that the proposed scheme can be applied to the
conventional PDE without any significant changes and can im-
prove the computational efficiency by about 12% on average.
Therefore, we believe that the proposed algorithm can be an ef-
fective tool for the fast motion estimation through the experi-
mental results.
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