DOI QR코드

DOI QR Code

Immunomodulatory Effects of Aureobasidium pullulans SM-2001 Exopolymers on Cyclophosphamide-Treated Mice

  • Yoon, Hyun-Soo (Department of Anatomy and Cell Biology, Hanyang University College of Medicine) ;
  • Kim, Joo-Wan (Glucan Corp. Research Institute, Marine Biotechnology Center) ;
  • Cho, Hyung-Rae (Glucan Corp. Research Institute, Marine Biotechnology Center) ;
  • Moon, Seung-Bae (Glucan Corp. Research Institute, Marine Biotechnology Center) ;
  • Shin, Hyun-Dong (Georgia Institute of Technology, College of Sciences, Atlanta) ;
  • Yang, Kun-Ju (Glucan Corp. Research Institute, Marine Biotechnology Center) ;
  • Lee, Hyeung-Sik (Department of Clinical Laboratory Science, College of Health and Therapy, Daegu Haany University) ;
  • Kwon, Young-Sam (Department of veterinary Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University)
  • Published : 2010.02.28

Abstract

The immunomodulatory effects of Aureohasidium pullulans SM-2001 exopolymers containing $\beta$-1,3/1,6-glucan were evaluated in cyclophosphamide (CPA)-treated mice. To induce immunosuppression, 150 and 110 mg/kg of CPA were intraperitoneally injected 3 days and 1 day, respectively, before beginning administration of the test material. Exopolymers were delivered subcutaneously or orally, four times, in a volume of 10 ml/kg at 12-h intervals beginning 24 h after the second CPA treatment. Changes in thymus and spleen weights, splenic amounts of tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-$1{\beta}$, and IL-10, and numbers of CD3+, CD4+, CD8+, and TNF-$\alpha+$ thymus and spleen cells were monitored in CPA-treated mice. As a result of CPA treatment, dramatic decreases in the number of CD3+, CD4+, CD8+, and TNF-$\alpha+$ cells were detected in the thymus and spleen, along with decreases in thymus and spleen weights. In addition, splenic TNF-$\alpha$, IL-$1{\beta}$, and IL-10 contents were also decreased on observation with flow cytometry. However, oral and subcutaneous treatments with exopolymers effectively reduced the immunosuppressive changes induced by CPA. Therefore, it is concluded that exopolymers of A. pullulans SM-2001 can effectively prevent immunosuppression through, at least partially, the recruitment of T cells and TNF-$\alpha+$ cells or enhancement of their activity, and can provide an effective component of prevention or treatment regimens for immunosuppression related to cancer, sepsis, and high-dose chemotherapy or radiotherapy.

Keywords

References

  1. Angulo, I., F. G. de las Heras, J. F. Garcia-Bustos, D. Gargallo, M. A. Munoz-Fernandez, and M. Fresno. 2000. Nitric oxideproducing $CD11b^+Ly-6G(Gr-1)^+CD31(ER-MP12)^+$ cells in the spleen of cyclophosphamide-treated mice: Implications for Tcell responses in immunosuppressed mice. Blood 95: 212-220.
  2. Benach, J. L., G. S. Habicht, T. W. Holbrook, and J. A. Cook. 1982. Glucan as an adjuvant for a murine Babesia microti immunization trial. Infect. Immun. 35: 947-951.
  3. Browder, I. W., D. L. Williams, A. Kitahama, and N. R. Di Luzio. 1984. Modification of post-operative C. albicans sepsis by glucan immunostimulation. Int. J. Immunopharmacol. 6: 19-26. https://doi.org/10.1016/0192-0561(84)90030-4
  4. Burnet, M. 1995. The helper T-cell responses, pp. 139-154. In I. R. Tizard (ed.). Immunology, an Introduction, 4th Ed. Saunders, Philadelphia.
  5. Chirigos, M. A., W. A. Stylos, R. M. Schultz, and J. R. Fullen. 1978. Chemical and biological adjuvants capable of potentiating tumor cell vaccine. Cancer Res. 38: 1085-1091.
  6. Clark, B. D., I. Bedrosian, R. Schindler, F. Cominelli, J. G. Cannon, A. R. Shaw, and C. A. Dinarello. 1991. Detection of interleukin 1 alpha and 1 beta in rabbit tissues during endotoxemia using sensitive radioimmunoassays. J. Appl. Physiol. 71: 2412-2418.
  7. Di Luzio, N. R., D. L. Williams, R. B. McNamee, B. F. Edwards, and A. Kitahama. 1979. Comparative tumor-inhibitory and anti-bacterial activity of soluble and particulate glucan. Int. J. Cancer 24: 773-779. https://doi.org/10.1002/ijc.2910240613
  8. Di Luzio, N. R. and D. L. Williams. 1978. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect. Immun. 20: 804-810.
  9. El-Bayoumy, K. 2001. The protective role of selenium on genetic damage and on cancer. Mutat. Res. 475: 123-139. https://doi.org/10.1016/S0027-5107(01)00075-6
  10. Estrada, A., C. H. Yun, A. Van Kessel, B. Li, S. Hauta, and B. Laarveld. 1997. Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol. Immunol. 41: 991-998.
  11. Grochow, L. B. 1996. Covalent DNA-binding drugs, pp. 293-316. In M. C. Perry (ed.). The Chemotherapy Source Book. Williams & Wilkins, Baltimore.
  12. Guillaume, T., D. B. Rubinstein, and M. Symann. 1998. Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 92: 1471-1490.
  13. Hofer, M. and M. Pospisil. 1997. Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors' results. Int. J. Immunopharmacol. 19: 607-609. https://doi.org/10.1016/S0192-0561(97)00057-X
  14. Holbrook, T. W., J. A. Cook, and B. W. Parker. 1981. Immunization against Leishmania donovani: Glucan as an adjuvant with killed promastigotes. Am. J. Trop. Med. Hyg. 30: 762-768.
  15. Hosseinimehr, S. J. and M. Karami. 2005. Citrus extract modulates genotoxicity induced by cyclophosphamide in mice bone marrow cells. J. Pharm. Pharmacol. 57: 505-509. https://doi.org/10.1211/0022357055849
  16. Hotchkiss, R. S., D. F. Osborne, G. D. Lappas, and I. E. Karl. 1995. Calcium antagonists decrease plasma and tissue concentrations of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-1 alpha in a mouse model of endotoxin. Shock 3: 337-342.
  17. Hoyert, D. L., K. D. Kochanek, and S. L. Murphy. 1999. Deaths: Final data for 1997. Natl. Vital. Stat. Rep. 47: 1-104.
  18. Hu, Q., J. Xu, and L. Chen. 2005. Antimutagenicity of seleniumenriched rice on mice exposure to cyclophosphamide and mitomycin C. Cancer Lett. 220: 29-35. https://doi.org/10.1016/j.canlet.2004.06.041
  19. Isaacs, A. 1995. Lymphokines and cytokines, pp. 155-169. In I. R. Tizard (ed.). Immunology, an Introduction, 4th Ed. Saunders, Philadelphia.
  20. Kim, H. D., H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, B. R. Park, et al. 2006. Effect of exopolymers from Aureobasidium pullulans on formalin-induced chronic paw inflammation in mice. J. Microbiol. Biotechnol. 16: 1954-1960.
  21. Kim, H. D., H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, B. R. Park, et al. 2008. Effects of $\beta$-glucan from Aureobasidium pullulans on acute inflammation in mice. Arch. Pharm. Res. 30: 323-328.
  22. Lee, H. S., H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, B. R. Park, H. J. Jang, L. S. Kim, and S. K. Ku. 2008. Effect of $\beta$- glucan from Aureobasidium pullulans on rat rib fracture healing. Lab. Anim. Res. 24: 39-44.
  23. Lee, J. N., D. Y. Lee, I. H. Ji, G. E. Kim, H. N. Kim, J. Sohn, S. Kim, and C. W. Kim. 2001. Purification of soluble betaglucan with immune-enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem. 65: 837-841. https://doi.org/10.1271/bbb.65.837
  24. Lotzova, E. and J. U. Gutterman. 1979. Effect of glucan on natural killer (NK) cells: Further comparison between NK cell and bone marrow effector cell activities. J. Immunol. 123: 607-611.
  25. Mackin, W. M., D. Brunke-Reese, Y. Gu, C. Crotty, and L. Fisette. 1994. Enhanced microbial activities of human peripheral blood monocytes and neutrophils (PMN) after pre-treatment with PGG-glucan $(Betafectin^{TM})$. FASEB J. 8: A216.
  26. Masihi, K. N., K. Madaj, H. Hintelmann, G. Gast, and Y. Kaneko. 1997. Down-regulation of tumor necrosis factor-$\alpha$, moderate reduction of interleukin-1$\beta$, but not interleukin-6 or interleukin-10, by glucan immunomodulators curdlan sulfate and lentinan. Int. J. Immunopharmacol. 19: 463-468. https://doi.org/10.1016/S0192-0561(97)00056-8
  27. Miyauchi, A., C. Hiramine, S. Tanaka, and K. Hojo. 1990. Differential effects of a single dose of cyclophosphamide on T cell subsets of the thymus and spleen in mice: Flow cytofluorometry analysis. Tohoku J. Exp. Med. 162: 147-167. https://doi.org/10.1620/tjem.162.147
  28. Parkman, R. and K. I. Weinberg. 1997. Immunological reconstitution following bone marrow transplantation. Immunol. Rev. 157: 73-78. https://doi.org/10.1111/j.1600-065X.1997.tb00975.x
  29. Pileri, S. A., G. Roncador, C. Ceccarelli, M. Piccioli, A. Briskomatis, E. Sabattini, et al. 1997. Antigen retrieval techniques in immunohistochemistry: Comparison of different methods. J. Pathol. 183: 116-123. https://doi.org/10.1002/(SICI)1096-9896(199709)183:1<116::AID-PATH1087>3.0.CO;2-2
  30. Poutsiaka, D. D., M. Mengozzi, E. Vannier, B. Sinha, and C. A. Dinarello. 1993. Cross-linking of the beta-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production. Blood 82: 3695-3700.
  31. Samira, S., C. Ferrand, A. Peled, A. Nagler, Y. Tovbin, H. Ben-Hur, N. Taylor, A. Globerson, and T. Lapidot. 2004. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells 22: 1085-1100. https://doi.org/10.1634/stemcells.22-6-1085
  32. Seo, H. P., J. M. Kim, H. D. Shin, T. K. Kim, H. J. Chang, B. R. Park, and J. W. Lee. 2002. Production of -1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Korean J. Biotechnol. Bioeng. 17: 376-380.
  33. Shi, S. R., B. Chaiwun, L. Young, R. J. Cote, and C. R. Taylor. 1993. Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J. Histochem. Cytochem. 41: 1599-1604. https://doi.org/10.1177/41.11.7691930
  34. Shin, H. D., K. J. Yang, B. R. Park, C. W. Son, H. J. Jang, and S. K. Ku. 2007. Antiosteoporotic effect of Polycan, beta-glucan from Aureobasidium, in ovariectomized osteoporotic mice. Nutrition 23: 853-860. https://doi.org/10.1016/j.nut.2007.08.011
  35. Soltys, J. and M. T. Quinn. 1999. Modulation of endotoxin- and enterotoxin-induced cytokine release by in vivo treatment with beta-(1,6)-branched beta-(1,3)-glucan. Infect. Immun. 67: 244-252.
  36. Tzianabos, A. O. 2000. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin. Microbiol. Rev. 13: 523-533. https://doi.org/10.1128/CMR.13.4.523-533.2000
  37. Unanue, E. R. 1995. The mononuclear-phagocytic system, pp. 61-74. In I. R. Tizard (ed.). Immunology, an Introduction, 4th Ed. Saunders, Philadelphia.
  38. Xun, C. Q., J. S. Thompson, C. D. Jennings, S. A. Brown, and M. B. Widmer. 1994. Effect of total body irradiation, busulfancyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83: 2360-2367.
  39. Yan, J. J., J. S. Jung, J. E. Lee, J. Lee, S. O. Huh, H. S. Kim, et al. 2004. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med. 10: 161-167. https://doi.org/10.1038/nm989

Cited by

  1. A 2-week repeated-dose oral toxicity test of Polycalcium, a mixed composition of Polycan and calcium lactate-gluconate 1 : 9 (g/g) vol.6, pp.3, 2010, https://doi.org/10.1007/s13530-014-0203-z
  2. Aureobasidium pullulans으로 부터 분리한 β-1,3/1,6-glucan의 면역활성의 연구 vol.23, pp.6, 2016, https://doi.org/10.11002/kjfp.2016.23.6.906
  3. An extract of Ulmus macrocarpa improves cellular immunity in immunosuppressed models vol.20, pp.6, 2010, https://doi.org/10.1080/19768354.2016.1230556
  4. 홍차 흑효모 발효물의 항산화, 항주름 및 미백효과 vol.43, pp.3, 2010, https://doi.org/10.15230/scsk.2017.43.3.265
  5. A clinical study on the efficacy and safety of the exopolymers from Aureobasidium pullulans (EAP) in subjects with mild-to-moderate atopic dermatitis vol.12, pp.1, 2020, https://doi.org/10.1007/s13530-020-00040-y
  6. Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans : A Literature Review vol.13, pp.1, 2021, https://doi.org/10.3390/nu13010242