References
- Chien, P.-J., F. Sheu, W.-T. Huang, and M.-S. Su. 2007. Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chem. 102: 1192-1198. https://doi.org/10.1016/j.foodchem.2006.07.007
- Chung, Y. C., C. L. Kuo, and C. C. Chen. 2005. Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technol. 96: 1473-1482. https://doi.org/10.1016/j.biortech.2004.12.001
- Chunmeng, S., Z. Ying, R. Xinze, W. Meng, S. Yongping, and C. Tianmin. 2006. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res. 133: 185-192. https://doi.org/10.1016/j.jss.2005.12.013
- Devlieghere, F., L. Vermeiren, and J. Debevere. 2004. New preservation technologies: Possibilities and limitations. Int. Dairy J. 14: 273-285. https://doi.org/10.1016/j.idairyj.2003.07.002
- Ferrera, P. C., M. L. Dupree, and V. P. Verdile. 1996. Dermatologic problems encountered in the emergency department. Am. J. Emerg. Med. 14: 588-601. https://doi.org/10.1016/S0735-6757(96)90108-4
- Gerasimenko, D. V., I. D. Avdienko, G. E. Bannikova, O. Y. Zueva, and V. P. Varlamov. 2003. Antibacterial effects of watersoluble low molecular-weight chitosans on different microorganisms. Appl. Biochem. Microbiol. 40: 253-257.
- Gupta, D. and A. Haile. 2006. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 69: 164-171.
- Hancock, R. W. E. and D. P. Speert. 2000. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updates 3: 247-255. https://doi.org/10.1054/drup.2000.0152
- Izadpanah, A. and R. L. Gallo. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52: 381-390. https://doi.org/10.1016/j.jaad.2004.08.026
- Jayakumar, R., N. Nwe, S. Tokura, and H. Tamura. 2007. Int. J. Biol. Macromol. 40: 175-181. https://doi.org/10.1016/j.ijbiomac.2006.06.021
- Jeon, Y.-J. and S.-K. Kim. 2000. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 41: 133-141. https://doi.org/10.1016/S0144-8617(99)00084-3
- Jeon, Y.-J., P.-J. Park, and S.-K. Kim. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44: 71-76. https://doi.org/10.1016/S0144-8617(00)00200-9
- Kim, D.-G., Y.-I. Jeong, C. Choi, S.-H. Roh, S.-K. Kang, M.-K. Jang, and J.-W. Nah. 2006. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319: 130-138. https://doi.org/10.1016/j.ijpharm.2006.03.040
- Kim, S.-K. and N. Rajapakse. 2005. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62: 357-368. https://doi.org/10.1016/j.carbpol.2005.08.012
- Lee, H.-W., Y.-S. Park, J.-S. Jung, and W.-S. Shin. 2002. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 8: 319-324. https://doi.org/10.1016/S1075-9964(03)00030-1
- Lim, S. H. and S. M. Hudson. 2003. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J. Macromol. Sci. Polym. Rev. C43: 223-269.
- Lim, S. H. and S. M. Hudson. 2004. Application of a fiberreactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr. Polym. 56: 227-234. https://doi.org/10.1016/j.carbpol.2004.02.005
- Liu, H., Y. Du, J. Yang, and H. Zhu. 2004. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydr. Polym. 55: 291-297. https://doi.org/10.1016/j.carbpol.2003.10.001
- Liu, N., X.-G. Chen, H.-J. Park, C.-G. Liu, C.-S. Liu, X.-H. Meng, and L.-J. Yu. 2006. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 64: 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
- Liu, X. F., Y. L. Guan, D. Z. Yang, Z. Li, and K. Yao. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 79: 1324-1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
- Nikaido, H. and R. E. W. Hancock. 1986. Outer membrane permeability of Pseudomonas aeruginosa, pp. 145-193. In J. R. Sokatch (ed.). The Bacteria: A Treatise on Structure and Function. Academic Press, London, U.K.
- No, H. K., N. Y. Park, S. H. Lee, and S. P. Meyers. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74: 65-72. https://doi.org/10.1016/S0168-1605(01)00717-6
- Qi, L., Z. Xu, X. Jiang, C. Hu, and X. Zou. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339: 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
- Qin, C., H. Li, Q. Xiao, Y. Liu, J. Zhu, and Y. Du. 2006. Watersolubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 63: 367-374. https://doi.org/10.1016/j.carbpol.2005.09.023
- Ravi-Kumar, M. M. N. V., R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb. 2004. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104: 6017-6084. https://doi.org/10.1021/cr030441b
- Rhoades, J. and S. Roller. 2000. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 66: 80-86. https://doi.org/10.1128/AEM.66.1.80-86.2000
- Ruparelia, J. P., A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4: 707-716. https://doi.org/10.1016/j.actbio.2007.11.006
- Shahidi, F., V. A. Janak-Kamil, and Y.-J. Jeon. 1999. Food applications of chitin and chitosans. Trends Food Sci. Tech. 10: 37-51. https://doi.org/10.1016/S0924-2244(99)00017-5
- Suzuki, K., T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki, and M. Suzuki. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403-408. https://doi.org/10.1016/S0008-6215(00)90359-8
- Tavaria, F., I. Reis, M. Paulo, M. Pintado, and F. X. Malcata. 2007. Effect of chitosans on skin-borne microorganisms. Adv. Chitin Sci. 10: 333-338.
- Thestrup-Pedersen, K. 1996. The incidence and pathophysiology of atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 7: S3-S7. https://doi.org/10.1016/0926-9959(96)00033-5
- Tikhonov, V. E., E. A. Stepnova, V. G. Babak, I. A. Yamskov, J. Palma-Guerrero, H.-B. Jansson, et al. 2006. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr. Polym. 64: 66-72. https://doi.org/10.1016/j.carbpol.2005.10.021
- Tokoro, A., N. Tatewaki, K. Suzuki, T. Mikami, S. Suzuki, and M. Suzuki. 1988. Growth-inhibitory effect of hexa-Nacetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem. Pharmac. Bull. 36: 784-790. https://doi.org/10.1248/cpb.36.784
- Tsukada, K., T. Matsumoto, K. Aizawa, A. Tokoro, R. Naruse, S. Suzuki, and M. Suzuki. 1990. Antimetastatic and growthinhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Japan. J. Canc. Res. 81: 259-265. https://doi.org/10.1111/j.1349-7006.1990.tb02559.x
- Uchida, Y., M. Izume, and A. Ohtakara. 1989. Preparation of chitosan oligomers with purified chitosanase and its application, pp. 373-382. In G. Skjak-Broek, T. Anthonsen, and P. Sandford (eds.). Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. Elsevier Applied Science, London, U.K.
- Ueno, K., T. Yamaguchi, N. Sakairi, and S. Tokura. 1997. Antimicrobial activity by fractionated chitosan oligomers. Adv. Chitin Sci. 2: 156-161.
- Vernazza, C. L., G. R. Gibson, and R. A. Rastall. 2005. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohydr. Polym. 60: 539-545. https://doi.org/10.1016/j.carbpol.2005.03.008
- Wang, G. H. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J. Food Protect. 55: 916-919.
- Wang, X., Y. Du, L. Fan, H. Liu, and Y. Hu. 2005. Chitosanmetal complexes as antimicrobial agent: Synthesis, characterization and structure-activity study. Polym. Bull. 55: 105-113. https://doi.org/10.1007/s00289-005-0414-1
- Wu, Y.-B., S.-H. Yu, F.-L. Mi, C.-W. Wu, S.-S. Shyu, C.-H. Peng, and A.-C. Chao. 2004. Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr. Polym. 57: 435-440. https://doi.org/10.1016/j.carbpol.2004.05.013
- Xia, W. S. and Y. N. Wu. 1996. Functional properties of chitooligosaccharides. J. Wuxi University Light Industry 15: 297-302.
- Zheng, L.-Y. and J.-F. Zhu. 2003. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 54: 527-530. https://doi.org/10.1016/j.carbpol.2003.07.009
Cited by
- Application of electron beam plasma for biopolymers modification vol.370, pp.1, 2010, https://doi.org/10.1088/1742-6596/370/1/012012
- Layer‐by‐layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles vol.24, pp.11, 2013, https://doi.org/10.1002/pat.3176
- Rapid Sonosynthesis of N‐Doped Nano TiO2 on Wool Fabric at Low Temperature: Introducing Self‐cleaning, Hydrophilicity, Antibacterial/Antifungal Properties with low Alkali Solubi vol.90, pp.6, 2010, https://doi.org/10.1111/php.12324
- Sonochemical Coating of Textiles with Hybrid ZnO/Chitosan Antimicrobial Nanoparticles vol.6, pp.2, 2010, https://doi.org/10.1021/am404852d
- New biomaterial based on cotton with incorporated Biomolecules vol.131, pp.15, 2010, https://doi.org/10.1002/app.40519
- Sonosynthesis of nano TiO2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric vol.21, pp.5, 2010, https://doi.org/10.1016/j.ultsonch.2014.03.009
- The Beneficial Effect of Chitooligosaccharides on Cell Behavior and Function of Primary Schwann Cells is Accompanied by Up-Regulation of Adhesion Proteins and Neurotrophins vol.39, pp.11, 2014, https://doi.org/10.1007/s11064-014-1387-y
- Chitooligosaccharides as novel ingredients of fermented foods vol.6, pp.11, 2015, https://doi.org/10.1039/c5fo00546a
- Biodegradable chitosan nanoparticles in drug delivery for infectious disease vol.10, pp.10, 2010, https://doi.org/10.2217/nnm.15.7
- Healthcare Laundry and Textiles in the United States: Review and Commentary on Contemporary Infection Prevention Issues vol.36, pp.9, 2010, https://doi.org/10.1017/ice.2015.135
- Study on inhibitory activity of chitosan-based materials against biofilm producing Pseudomonas aeruginosa strains vol.30, pp.3, 2010, https://doi.org/10.1177/0885328215578781
- Simultaneous sonosynthesis and sonofabrication of N-doped ZnO/TiO2 core-shell nanocomposite on wool fabric: Introducing various properties specially nano photo bleaching vol.27, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2015.04.017
- In situ photo sonosynthesis and characterize nonmetal/metal dual doped honeycomb-like ZnO nanocomposites on wool fabric vol.27, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2015.05.021
- Does nanobiotechnology create new tools to combat microorganisms? vol.6, pp.2, 2010, https://doi.org/10.1515/ntrev-2016-0042
- Does nanobiotechnology create new tools to combat microorganisms? vol.6, pp.2, 2010, https://doi.org/10.1515/ntrev-2016-0042
- Antimicrobial nanomaterials against biofilms: an alternative strategy vol.25, pp.2, 2010, https://doi.org/10.1139/er-2016-0046
- Comparison of methods for determining the effectiveness of antibacterial functionalized textiles vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0188304
- Chitosan’s biological activity upon skin-related microorganisms and its potential textile applications vol.34, pp.7, 2010, https://doi.org/10.1007/s11274-018-2471-2
- Efficient Immobilization of Bacterial GH Family 46 Chitosanase by Carbohydrate-Binding Module Fusion for the Controllable Preparation of Chitooligosaccharides vol.67, pp.24, 2010, https://doi.org/10.1021/acs.jafc.9b01608
- Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations vol.7, pp.9, 2010, https://doi.org/10.3390/microorganisms7090356
- Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20235889
- Streptococcus mutans Growth and Resultant Material Surface Roughness on Modified Glass Ionomers vol.1, pp.None, 2010, https://doi.org/10.3389/froh.2020.613384
- Synthesis and Characterization of Chitosan Filtration Membranes with Enhanced Antimicrobial Properties vol.2, pp.1, 2010, https://doi.org/10.1134/s2517751620010084
- Chitooligosaccharide as A Possible Replacement for Sulfur Dioxide in Winemaking vol.10, pp.2, 2020, https://doi.org/10.3390/app10020578
- Anti-Pathogenic Functions of Non-Digestible Oligosaccharides In Vitro vol.12, pp.6, 2010, https://doi.org/10.3390/nu12061789
- Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles vol.13, pp.4, 2021, https://doi.org/10.3390/polym13040665
- Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics vol.10, pp.12, 2010, https://doi.org/10.3390/antibiotics10121473