References
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
- Broda, D., D. Saul, R. Bell, and D. Musgrave. 2000. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium. Int. J. Syst. Evol. Microbiol. 50: 623-631. https://doi.org/10.1099/00207713-50-2-623
- Cavedon, K., S. B. Leschine, and E. Canale-Parola. 1990. Cellulase system of a free-living, mesophilic Clostridium (strain C7). J. Bacteriol. 172: 4222-4230.
- Chassard, C., V. Goumy, M. Leclerc, C. Del'homme, A. Bernalier-Donadille. 2007. Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol. Ecol. 61: 121-131. https://doi.org/10.1111/j.1574-6941.2007.00314.x
- Chin, K.-J., D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65: 5042-5049.
- Cocolin, L., L. F. Bisson, and D. A. Mills. 2000. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189: 81-87. https://doi.org/10.1111/j.1574-6968.2000.tb09210.x
- Cui, Z. J., M. D. Li, Z. Piao, H. Z. Yong, M. Ishii, and Y. Igarashi. 2002. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function. Environ. Sci. (China) 23: 36-39.
- Debeire, P., B. Priem, G. Strecker, and M. Vignon. 1990. Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. Eur. J. Biochem. 187: 573-580. https://doi.org/10.1111/j.1432-1033.1990.tb15339.x
- Felske, A., H. Rheims, A. Wolterink, E. Stackebrandt, and A. D. L. Akkermans. 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143: 2983-2989. https://doi.org/10.1099/00221287-143-9-2983
- Forsberg, C. W., T. J. Beveridge, and A. Hellstrom. 1981. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 42: 886-896.
- Freedman, D. L., M. Swamy, N. C. Bell, and M. F. Verce. 2004. Biodegradation of chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions. Appl. Environ. Microbiol. 70: 4629-4634. https://doi.org/10.1128/AEM.70.8.4629-4634.2004
- Fritsche, K., G. Auling, J. R. Andreesen, and U. Lechner. 1999. Defluvibacter lusatiae gen. nov., sp. nov., a new chlorophenoldegrading member of the alpha-2 subgroup of Proteobacteria. Syst. Appl. Microbiol. 22: 197-204. https://doi.org/10.1016/S0723-2020(99)80066-6
- Guo, P., X. Wang, W. Zhu, H. Yang, X. Cheng, and Z. Cui. 2008. Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. 20: 109-114. https://doi.org/10.1016/S1001-0742(08)60017-0
- Hwang, S.-S., S.-J. Lee, H. K. Kim, J.-O. Ka, K.-J. Kim, and H.-G. Song. 2008. Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J. Microbiol. Biotechnol. 18: 1819-1826.
- Iino, T., K. Mori, K. Tanaka, K.-I. Suzuki, and S. Harayama. 2007. Oscillibacter valericigenes gen. nov., sp. nov., a valerateproducing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Evol. Microbiol. 57: 1840-1845. https://doi.org/10.1099/ijs.0.64717-0
- Juhasz, T., Z. Szengyel, N. Szijarto, and K. Reczey. 2004. Effect of pH on cellulase production of Trichoderma ressei RUT C30. Appl. Biochem. Ziotechnol. 113: 201-211. https://doi.org/10.1385/ABAB:113:1-3:201
- Kang, S. W., S. W. Kim, and K. Kim. 1994. Production of cellulase and xylanase by Aspergillus niger KKS. J. Microbiol. Biotechnol. 4: 49-55.
- Kaparaju, P., M. Serrano, A. B. Thomsen, P. Kongjan, and I. Angelidaki. 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100: 2562-2568. https://doi.org/10.1016/j.biortech.2008.11.011
- Kosugi, A., K. Murashima, and R. H. Doi. 2001. Characterization of xylanolytic enzymes in Clostridium cellulovorans: Expression of xylanase activity dependent on growth substrates. J. Bacteriol. 183: 7037-7043. https://doi.org/10.1128/JB.183.24.7037-7043.2001
- Lamed, R. and J. G. Zeikus. 1980. Glucose fermentation pathway of Thermoanaerobium brockii. J. Bacteriol. 141: 1251-1257.
- Lane, D. J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. U.S.A. 82: 6955-6959. https://doi.org/10.1073/pnas.82.20.6955
- Lee, J. J., K. S. Hahm, K.-Y. Lee, and S.-T. Lee. 1997. Characterization of an endoxylanase produced by an isolated strain of Bacillus sp. J. Microbiol. Biotechnol. 7: 114-120.
- Lee, S. F., C. W. Forsberg, and L. N. Gibbins. 1985. Xylanolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 50: 1068-1076.
- Lewis, S. M., L. Montgomery, K. A. Garleb, L. L. Berger, and G. C. Fahey Jr. 1988. Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85. Appl. Environ. Microbiol. 54: 1163-1169.
- Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- MOA. 2006. China Agricultural Census. China Agriculture Press, Beijing, China.
- Mocali, S., D. Paffetti, G. Emiliani, A. Benedetti, and R. Fani. 2008. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biol. Fertil. Soils 44: 557-569. https://doi.org/10.1007/s00374-007-0235-5
- Murray, W. D., L. Hofman, N. L. Campbell, and R. H. Madden. 1986. Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste. Syst. Appl. Microbiol. 8: 181-184. https://doi.org/10.1016/S0723-2020(86)80074-1
- Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
- Nishiyama, T., A. Ueki, N. Kaku, K. Watanabe, and K. Ueki. 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol. Microbiol. 59: 1901-1907. https://doi.org/10.1099/ijs.0.008268-0
-
Odom, J. M. and J. D. Wall. 1983. Photoproduction of
$H_2$ from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol. 45: 1300-1305. - Ouwerkerk, D., A. V. Klieve, R. J. Forster, J. M. Templeton, and A. J. Maguire. 2005. Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus. Lett. Appl. Microbiol. 41: 327-333. https://doi.org/10.1111/j.1472-765X.2005.01774.x
- Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697.
- Rogers, G. M. and A. A. W. Baecker. 1991. Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula wood chips. Int. J. Syst. Evol. Microbiol. 41: 140-143.
- Ryu, S. H., B. S. Chung, N. T. Le, H. H. Jang, P.-Y. Yun, W. Park, and C. O. Jeon. 2008. Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int. J. Syst. Evol. Microbiol. 58: 633-636. https://doi.org/10.1099/ijs.0.65481-0
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Scholten-Koerselman, I., F. Houwaard, P. Janssen, and A. J. B. Zehnder. 1986. Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure. Antonie Van Leeuwenhoek 52: 543-554. https://doi.org/10.1007/BF00423415
- Selig, M. J., E. P. Knoshaug, W. S. Adney, M. E. Himmel, and S. R. Decker. 2008. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 99: 4997-5005. https://doi.org/10.1016/j.biortech.2007.09.064
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- van Andel, J., G. Zoutberg, P. Crabbendam, and A. Breure. 1985. Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26. https://doi.org/10.1007/BF02660113
- Varel, V. H., R. S. Tanner, and C. R. Woese. 1995. Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int. J. Syst. Evol. Microbiol. 45: 490-494.
-
Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of
$\beta$ -1,4-xylanase in microorganisms: Functions and applications. Microbiol. Mol. Biol. Rev. 52: 305-317. - Yang, H. Y., X. F. Wang, L. J. Gao, S. Haruta, M. Ishii, Y. Igarashi, and Z. J. Cui. 2008. Development of an enrichment culture growing at low temperature used for ensiling rice straw. J. Microbiol. Biotechnol. 18: 711-717.
- Zhu, H., F. Qu, and L.-H. Zhu. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279-5280. https://doi.org/10.1093/nar/21.22.5279
Cited by
- Enhancing the Anaerobic Digestion of Corn Stalks Using Composite Microbial Pretreatment vol.21, pp.7, 2010, https://doi.org/10.4014/jmb.1011.11026
- A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca) vol.42, pp.9, 2012, https://doi.org/10.1016/j.ibmb.2012.05.002
- Survival and Performance of Two Cellulose-Degrading Microbial Systems Inoculated into Wheat Straw-Amended Soil vol.22, pp.1, 2010, https://doi.org/10.4014/jmb.1102.02021
- Cellulolytic bacteria from soils in harsh environments vol.28, pp.5, 2012, https://doi.org/10.1007/s11274-012-1025-2
- Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia vol.97, pp.20, 2010, https://doi.org/10.1007/s00253-013-4699-y
- Influence of Cell Disruption and Elution on Cellulase Release of Clostridium straminisolvens (CSK1) vol.173, pp.2, 2010, https://doi.org/10.1007/s12010-014-0857-7
- Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System vol.24, pp.5, 2010, https://doi.org/10.4014/jmb.1310.10089
- Clostridium oryzae sp. nov., from soil of a Japanese rice field vol.65, pp.3, 2010, https://doi.org/10.1099/ijs.0.000042
- Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.00324
- Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment vol.6, pp.65, 2010, https://doi.org/10.1039/c5ra27393e
- Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.02623
- Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity vol.28, pp.2, 2010, https://doi.org/10.4014/jmb.1709.09036
- Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics vol.11, pp.None, 2010, https://doi.org/10.1186/s13068-018-1282-x
- Enrichment and Characterisation of a Mixed-Source Ethanologenic Community Degrading the Organic Fraction of Municipal Solid Waste Under Minimal Environmental Control vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00722
- Biological pretreatment of rice straw by ligninolytic Bacillus sp. strains for enhancing biogas production vol.38, pp.3, 2010, https://doi.org/10.1002/ep.13036
- Genomic annotation and validation of bacterial consortium NDMC-1 for enhanced degradation of sugarcane bagasse vol.69, pp.7, 2019, https://doi.org/10.1007/s13213-019-01462-x
- Co-culturing of Novel Bacillus Species Isolated from Municipal Sludge and Gut of Red Wiggler Worm for Improving CMCase Activity vol.11, pp.5, 2020, https://doi.org/10.1007/s12649-018-0448-x
- Degradation of lignocelluloses in straw using AC-1, a thermophilic composite microbial system vol.9, pp.None, 2010, https://doi.org/10.7717/peerj.12364
- Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7 vol.31, pp.8, 2010, https://doi.org/10.4014/jmb.2106.06015
- The changes in macronutrients and microbial community structure during the co-composting of white wine distillers’ grains and potassium silicate vol.319, pp.None, 2021, https://doi.org/10.1016/j.jclepro.2021.128681