DOI QR코드

DOI QR Code

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University) ;
  • Zhu, Wanbin (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University) ;
  • Wang, Hui (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University) ;
  • Lu, Yucai (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University) ;
  • Wang, Xiaofen (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University) ;
  • Zheng, Dan (Guangxi Soil and Fertilizer Station) ;
  • Cui, Zongjun (College of Agronomy and Biotechnology/Center of Biomass Engineering, China Agricultural University)
  • Published : 2010.02.28

Abstract

To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  3. Broda, D., D. Saul, R. Bell, and D. Musgrave. 2000. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium. Int. J. Syst. Evol. Microbiol. 50: 623-631. https://doi.org/10.1099/00207713-50-2-623
  4. Cavedon, K., S. B. Leschine, and E. Canale-Parola. 1990. Cellulase system of a free-living, mesophilic Clostridium (strain C7). J. Bacteriol. 172: 4222-4230.
  5. Chassard, C., V. Goumy, M. Leclerc, C. Del'homme, A. Bernalier-Donadille. 2007. Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol. Ecol. 61: 121-131. https://doi.org/10.1111/j.1574-6941.2007.00314.x
  6. Chin, K.-J., D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65: 5042-5049.
  7. Cocolin, L., L. F. Bisson, and D. A. Mills. 2000. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189: 81-87. https://doi.org/10.1111/j.1574-6968.2000.tb09210.x
  8. Cui, Z. J., M. D. Li, Z. Piao, H. Z. Yong, M. Ishii, and Y. Igarashi. 2002. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function. Environ. Sci. (China) 23: 36-39.
  9. Debeire, P., B. Priem, G. Strecker, and M. Vignon. 1990. Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. Eur. J. Biochem. 187: 573-580. https://doi.org/10.1111/j.1432-1033.1990.tb15339.x
  10. Felske, A., H. Rheims, A. Wolterink, E. Stackebrandt, and A. D. L. Akkermans. 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143: 2983-2989. https://doi.org/10.1099/00221287-143-9-2983
  11. Forsberg, C. W., T. J. Beveridge, and A. Hellstrom. 1981. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 42: 886-896.
  12. Freedman, D. L., M. Swamy, N. C. Bell, and M. F. Verce. 2004. Biodegradation of chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions. Appl. Environ. Microbiol. 70: 4629-4634. https://doi.org/10.1128/AEM.70.8.4629-4634.2004
  13. Fritsche, K., G. Auling, J. R. Andreesen, and U. Lechner. 1999. Defluvibacter lusatiae gen. nov., sp. nov., a new chlorophenoldegrading member of the alpha-2 subgroup of Proteobacteria. Syst. Appl. Microbiol. 22: 197-204. https://doi.org/10.1016/S0723-2020(99)80066-6
  14. Guo, P., X. Wang, W. Zhu, H. Yang, X. Cheng, and Z. Cui. 2008. Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. 20: 109-114. https://doi.org/10.1016/S1001-0742(08)60017-0
  15. Hwang, S.-S., S.-J. Lee, H. K. Kim, J.-O. Ka, K.-J. Kim, and H.-G. Song. 2008. Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J. Microbiol. Biotechnol. 18: 1819-1826.
  16. Iino, T., K. Mori, K. Tanaka, K.-I. Suzuki, and S. Harayama. 2007. Oscillibacter valericigenes gen. nov., sp. nov., a valerateproducing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int. J. Syst. Evol. Microbiol. 57: 1840-1845. https://doi.org/10.1099/ijs.0.64717-0
  17. Juhasz, T., Z. Szengyel, N. Szijarto, and K. Reczey. 2004. Effect of pH on cellulase production of Trichoderma ressei RUT C30. Appl. Biochem. Ziotechnol. 113: 201-211. https://doi.org/10.1385/ABAB:113:1-3:201
  18. Kang, S. W., S. W. Kim, and K. Kim. 1994. Production of cellulase and xylanase by Aspergillus niger KKS. J. Microbiol. Biotechnol. 4: 49-55.
  19. Kaparaju, P., M. Serrano, A. B. Thomsen, P. Kongjan, and I. Angelidaki. 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100: 2562-2568. https://doi.org/10.1016/j.biortech.2008.11.011
  20. Kosugi, A., K. Murashima, and R. H. Doi. 2001. Characterization of xylanolytic enzymes in Clostridium cellulovorans: Expression of xylanase activity dependent on growth substrates. J. Bacteriol. 183: 7037-7043. https://doi.org/10.1128/JB.183.24.7037-7043.2001
  21. Lamed, R. and J. G. Zeikus. 1980. Glucose fermentation pathway of Thermoanaerobium brockii. J. Bacteriol. 141: 1251-1257.
  22. Lane, D. J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. U.S.A. 82: 6955-6959. https://doi.org/10.1073/pnas.82.20.6955
  23. Lee, J. J., K. S. Hahm, K.-Y. Lee, and S.-T. Lee. 1997. Characterization of an endoxylanase produced by an isolated strain of Bacillus sp. J. Microbiol. Biotechnol. 7: 114-120.
  24. Lee, S. F., C. W. Forsberg, and L. N. Gibbins. 1985. Xylanolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 50: 1068-1076.
  25. Lewis, S. M., L. Montgomery, K. A. Garleb, L. L. Berger, and G. C. Fahey Jr. 1988. Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85. Appl. Environ. Microbiol. 54: 1163-1169.
  26. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  27. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  28. MOA. 2006. China Agricultural Census. China Agriculture Press, Beijing, China.
  29. Mocali, S., D. Paffetti, G. Emiliani, A. Benedetti, and R. Fani. 2008. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biol. Fertil. Soils 44: 557-569. https://doi.org/10.1007/s00374-007-0235-5
  30. Murray, W. D., L. Hofman, N. L. Campbell, and R. H. Madden. 1986. Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste. Syst. Appl. Microbiol. 8: 181-184. https://doi.org/10.1016/S0723-2020(86)80074-1
  31. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  32. Nishiyama, T., A. Ueki, N. Kaku, K. Watanabe, and K. Ueki. 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol. Microbiol. 59: 1901-1907. https://doi.org/10.1099/ijs.0.008268-0
  33. Odom, J. M. and J. D. Wall. 1983. Photoproduction of $H_2$ from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol. 45: 1300-1305.
  34. Ouwerkerk, D., A. V. Klieve, R. J. Forster, J. M. Templeton, and A. J. Maguire. 2005. Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus. Lett. Appl. Microbiol. 41: 327-333. https://doi.org/10.1111/j.1472-765X.2005.01774.x
  35. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697.
  36. Rogers, G. M. and A. A. W. Baecker. 1991. Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula wood chips. Int. J. Syst. Evol. Microbiol. 41: 140-143.
  37. Ryu, S. H., B. S. Chung, N. T. Le, H. H. Jang, P.-Y. Yun, W. Park, and C. O. Jeon. 2008. Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int. J. Syst. Evol. Microbiol. 58: 633-636. https://doi.org/10.1099/ijs.0.65481-0
  38. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  39. Scholten-Koerselman, I., F. Houwaard, P. Janssen, and A. J. B. Zehnder. 1986. Bacteroides xylanolyticus sp. nov., a xylanolytic bacterium from methane producing cattle manure. Antonie Van Leeuwenhoek 52: 543-554. https://doi.org/10.1007/BF00423415
  40. Selig, M. J., E. P. Knoshaug, W. S. Adney, M. E. Himmel, and S. R. Decker. 2008. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 99: 4997-5005. https://doi.org/10.1016/j.biortech.2007.09.064
  41. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  42. van Andel, J., G. Zoutberg, P. Crabbendam, and A. Breure. 1985. Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26. https://doi.org/10.1007/BF02660113
  43. Varel, V. H., R. S. Tanner, and C. R. Woese. 1995. Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int. J. Syst. Evol. Microbiol. 45: 490-494.
  44. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Mol. Biol. Rev. 52: 305-317.
  45. Yang, H. Y., X. F. Wang, L. J. Gao, S. Haruta, M. Ishii, Y. Igarashi, and Z. J. Cui. 2008. Development of an enrichment culture growing at low temperature used for ensiling rice straw. J. Microbiol. Biotechnol. 18: 711-717.
  46. Zhu, H., F. Qu, and L.-H. Zhu. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279-5280. https://doi.org/10.1093/nar/21.22.5279

Cited by

  1. Enhancing the Anaerobic Digestion of Corn Stalks Using Composite Microbial Pretreatment vol.21, pp.7, 2010, https://doi.org/10.4014/jmb.1011.11026
  2. A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca) vol.42, pp.9, 2012, https://doi.org/10.1016/j.ibmb.2012.05.002
  3. Survival and Performance of Two Cellulose-Degrading Microbial Systems Inoculated into Wheat Straw-Amended Soil vol.22, pp.1, 2010, https://doi.org/10.4014/jmb.1102.02021
  4. Cellulolytic bacteria from soils in harsh environments vol.28, pp.5, 2012, https://doi.org/10.1007/s11274-012-1025-2
  5. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia vol.97, pp.20, 2010, https://doi.org/10.1007/s00253-013-4699-y
  6. Influence of Cell Disruption and Elution on Cellulase Release of Clostridium straminisolvens (CSK1) vol.173, pp.2, 2010, https://doi.org/10.1007/s12010-014-0857-7
  7. Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System vol.24, pp.5, 2010, https://doi.org/10.4014/jmb.1310.10089
  8. Clostridium oryzae sp. nov., from soil of a Japanese rice field vol.65, pp.3, 2010, https://doi.org/10.1099/ijs.0.000042
  9. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.00324
  10. Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment vol.6, pp.65, 2010, https://doi.org/10.1039/c5ra27393e
  11. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.02623
  12. Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity vol.28, pp.2, 2010, https://doi.org/10.4014/jmb.1709.09036
  13. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics vol.11, pp.None, 2010, https://doi.org/10.1186/s13068-018-1282-x
  14. Enrichment and Characterisation of a Mixed-Source Ethanologenic Community Degrading the Organic Fraction of Municipal Solid Waste Under Minimal Environmental Control vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00722
  15. Biological pretreatment of rice straw by ligninolytic Bacillus sp. strains for enhancing biogas production vol.38, pp.3, 2010, https://doi.org/10.1002/ep.13036
  16. Genomic annotation and validation of bacterial consortium NDMC-1 for enhanced degradation of sugarcane bagasse vol.69, pp.7, 2019, https://doi.org/10.1007/s13213-019-01462-x
  17. Co-culturing of Novel Bacillus Species Isolated from Municipal Sludge and Gut of Red Wiggler Worm for Improving CMCase Activity vol.11, pp.5, 2020, https://doi.org/10.1007/s12649-018-0448-x
  18. Degradation of lignocelluloses in straw using AC-1, a thermophilic composite microbial system vol.9, pp.None, 2010, https://doi.org/10.7717/peerj.12364
  19. Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7 vol.31, pp.8, 2010, https://doi.org/10.4014/jmb.2106.06015
  20. The changes in macronutrients and microbial community structure during the co-composting of white wine distillers’ grains and potassium silicate vol.319, pp.None, 2021, https://doi.org/10.1016/j.jclepro.2021.128681