DOI QR코드

DOI QR Code

Movement of Rhizobia Inside Tobacco and Lifestyle Alternation from Endophytes to Free-Living Rhizobia on Leaves

  • Ji, Kui-Xian (Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences) ;
  • Chi, Feng (Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences) ;
  • Yang, Ming-Feng (Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences) ;
  • Shen, Shi-Hua (Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences) ;
  • Jing, Yu-Xiang (Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences) ;
  • Dazzo, Frank B. (Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing) ;
  • Cheng, Hai-Ping (Lehman College, the City University of New York)
  • Published : 2010.02.28

Abstract

Rhizobia are well-known for their ability to infect and nodulate legume roots, forming a nitrogen-fixing symbiosis of agricultural importance. In addition, recent studies have shown that rhizobia can colonize roots and aerial plant tissues of rice as a model plant of the Graminaceae family. Here we show that rhizobia can invade tobacco, a model plant belonging to the Solanaceae family. Inoculation of seedling. roots with five GFP-tagged rhizobial species followed by microscopy and viable plating analyses indicated their colonization of the surface and interior of the whole vegetative plant. Blockage of ascending epiphytic migration by coating the hypocotyls with Vaseline showed that the endophytic rhizobia can exit the leaf interior through stomata and colonize the external phyllosphere habitat. These studies indicate rhizobia can colonize both below- and above-ground tissues of tobacco using a dynamic invasion process that involves both epiphytic and endophytic lifestyles.

Keywords

References

  1. Beringer, J. E. 1974. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84: 188-198. https://doi.org/10.1099/00221287-84-1-188
  2. Biological Nitrogen Fixation: The Global Challenge & Future Needs. A Position Paper. Discussed at The Rockefeller Foundation Bellagio Conference Centre. Lake Como, Italy. April 8-12, 1997
  3. Biswas, J. C., J. K. Ladha, and F. B. Dazzo. 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Amer. Journal 64: 1644-1650. https://doi.org/10.2136/sssaj2000.6451644x
  4. Biswas, J. C., J. K. Ladha, F. B. Dazzo, Y. G. Yanni, and B. G. Rolfe. 2000. Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J. 92: 880-886. https://doi.org/10.2134/agronj2000.925880x
  5. Chaintreuil, C., E. Giraud, Y. Prin, J. Lorquin, A. Ba, M. Gillis, P. de Lajudie, and B. Dreyfus. 2000. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl. Environ. Microbiol. 66: 5437-5447. https://doi.org/10.1128/AEM.66.12.5437-5447.2000
  6. Cheng, H. P. and G. C. Walker. 1998. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180: 5183-5191.
  7. Chi, F., S. H. Shen, H. P. Cheng, Y. X. Jing, Y. G. Yanni, and F. B. Dazzo. 2005. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 71: 7271-7278.
  8. Dazzo, F. B. 2004. Applications of quantitative microscopy in studies of plant surface microbiology, pp. 503-550. In A. Varma, L. Abbott, D. Werner, and R. Hampp (eds.). Plant surface microbiology. Springer-Verlag, Berlin, Germany.
  9. Ditta, G., S. Stanfield, D. Corbin, and D. R. Helinski. 1980. Broad host range DNA cloning system for Gram-negative bacteria - construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. U.S.A. 77: 7347-7351. https://doi.org/10.1073/pnas.77.12.7347
  10. Dong, Y. M., A. L. Iniguez, B. M. M. Ahmer, and E. W. Triplett. 2003. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl. Environ. Microbiol. 69: 1783-1790. https://doi.org/10.1128/AEM.69.3.1783-1790.2003
  11. Endre, G., A. Kereszt, Z. Kevei, S. Mihacea, P. Kalo, and G. B. Kiss. 2002. A receptor kinase gene regulating symbiotic nodule development. Nature 417: 962-966. https://doi.org/10.1038/nature00842
  12. Fahraeus, G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16: 374-381. https://doi.org/10.1099/00221287-16-2-374
  13. Gutierrez-Zamora, M. L. and E. Martinez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91: 117-126. https://doi.org/10.1016/S0168-1656(01)00332-7
  14. Gyaneshwar, P., N. Mathan, Q. L. Barraquio, P. M. Reddy, P. P. M. Iannetta, F. L. Olivares, and J. K. Ladha. 2002. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant-Microbe Interact. 15: 894-906. https://doi.org/10.1094/MPMI.2002.15.9.894
  15. Hallmann, J., A. QuadtHallmann, W. F. Mahaffee, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914. https://doi.org/10.1139/m97-131
  16. Hilali, A., D. Prevost, W. J. Broughton, and H. Antoun. 2001. Effects of inoculation with strains of Rhizobium leguminosarum bv. trifolii on whieat cultivated in clover crop rotation agricultural soil in Morocco. Can. J. Microbiol. 47: 590-593.
  17. Inouye, S. and F. I. Tsuji. 1994. Aequorea green fluorescent protein, expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Letters 341: 277-280. https://doi.org/10.1016/0014-5793(94)80472-9
  18. James, E. K., F. L. Olivares, A. L. M. de Oliveira, F. B. dos Reis, L. G. da Silva, and V. M. Reis. 2001. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J. Exp. Botany 52: 747-760.
  19. Kurokawa, M., Hatano, M., Kashiwagi, N., Saito, T., Ishida, S., and R. Homma.1962. A new method for the turbidimetric measurement of bacterial density. J. Bacteriol. 83: 14-19.
  20. Long, S. R. 2001. Genes and signals in the Rhizobium-legume symbiosis. Plant Physiology 125: 69-72. https://doi.org/10.1104/pp.125.1.69
  21. Luby-Phelps, K., G. Ning, J. Fogerty, and J. C. Besharse. 2003. Visualization of dentified GFP-expressing cells by light and electron microscopy. J. Histochem. Cytochem. 51: 271-274. https://doi.org/10.1177/002215540305100301
  22. Lupwayi, N. Z., G. W. Clayton, K. G. Hanson, W. A. Rice, and V. O. Biederbeck. 2004. Endophytic rhizobia in barley, wheat and canola roots. Can. J. Plant Sci. 84: 37-45. https://doi.org/10.4141/P03-087
  23. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Noel, T. C., C. Sheng, C. K. Yost, R. P. Pharis, and M. F. Hynes. 1996. Rhizobium leguminosarum as a plant growthpromoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol. 42: 279-283. https://doi.org/10.1139/m96-040
  25. Prayitno, J., J. Stefaniak, J. McIver, J. J. Weinman, F. B. Dazzo, J. K. Ladha, W. Barraquio, Y. G. Yanni, and B. G. Rolfe. 1999. Interactions of rice seedlings with bacteria isolated from rice roots. Austr. J. Plant Physiol. 26: 521-535. https://doi.org/10.1071/PP98090
  26. Rahme, L. G., F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov, G. W. Lau, S. Mahajan-Miklos, J. Plotnikova, M. W. Tan, et al. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Nat. Acad. Sci. U.S.A. 97: 8815-8821. https://doi.org/10.1073/pnas.97.16.8815
  27. Reddy, P. M., J. K. Ladha, R. B. So, R. J. Hernandez, M. C. Ramos, O. R. Angeles, F. B. Dazzo, and F. J. deBruijn. 1997. Rhizobial communication with rice roots: Induction of phenotypic changes, mode of invasion and extent of colonization. Plant and Soil 194: 81-98. https://doi.org/10.1023/A:1004243915997
  28. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, pp. 1.105-101.111.3 Ed. Cold Spring Harbor Laboratory Press, NY.
  29. Sabry, S. R. S., S. A. Saleh, C. A. Batchelor, J. Jones, J. Jotham, G. Webster, S. L. Kothari, M. R. Davey, and E. C. Cocking. 1997. Endophytic establishment of Azorhizobium caulinodans in wheat. Proc. R. Soc. Lond. Series B-Biol. Sci. 264: 341-346. https://doi.org/10.1098/rspb.1997.0049
  30. Stone, P. J., K. J. O'Callaghan, M. R. Davey, and E. C. Cocking. 2001. Azorhizobium caulinodans ORS571 colonizes the xylem of Arabidopsis thaliana. Mol. Plant-Microbe Interact. 14: 93-97. https://doi.org/10.1094/MPMI.2001.14.1.93
  31. Stracke, S., C. Kistner, S. Yoshida, L. Mulder, S. Sato, T. Kaneko, S. Tabata, N. Sandal, J. Stougaard, et al. 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417: 959-962. https://doi.org/10.1038/nature00841
  32. Verkhusha, V. V., I. M. Kuznetsova, O. V. Stepanenko, A. G. Zaraisky, M. M. Shavlovsky, K. K. Turoverov, and V. N. Uversky. 2003. High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry 42: 7879-7884. https://doi.org/10.1021/bi034555t
  33. Weidner, S., A. Puhler, and H. Kuster. 2003. Genomics insights into symbiotic nitrogen fixation. Curr. Opin. Biotechnol. 14: 200-205. https://doi.org/10.1016/S0958-1669(03)00022-3
  34. Yanni, Y. G., R. Y. Rizk, F. K. Abd El-Fattah, A. Squartini, V. Corich, A. Giacomini, F. de Bruijn, J. Rademaker, J. Maya-Flores, P. Ostrom, M. Vega-Hernandez, R.I. Hollingsworth, E. Martinez-Molina, P. Mateos, E. Velazquez, J. Wopereis, E. Triplett, M. Umali-Garcia, J. A., Anarna, B. G. Rolfe, J. K. Ladha, J. Hill, R. Mujoo, P. K. Ng, and F. B. Dazzo. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol. 28: 845-870.
  35. Yanni, Y. G., R. Y. Rizk, V. Corich, A. Squartini, K. Ninke, S. Philip-Hollingsworth, G. Orgambide, F. deBruijn, J. Stoltzfus, D. Buckley, T. M. Schmidt, P. F. Mateos, J. K. Ladha, and F. B. Dazzo. 1997. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil 194: 99-114.

Cited by

  1. Life Histories of Symbiotic Rhizobia and Mycorrhizal Fungi vol.21, pp.18, 2011, https://doi.org/10.1016/j.cub.2011.06.018
  2. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes vol.18, pp.8, 2010, https://doi.org/10.1111/1462-2920.13061
  3. Migration of endophytic diazotroph Azorhizobium caulinodans ORS571 inside wheat (Triticum aestivum L) and its effect on microRNAs vol.17, pp.2, 2017, https://doi.org/10.1007/s10142-016-0534-8
  4. The infection and impact of Azorhizobium caulinodans ORS571 on wheat ( Triticum aestivum L.) vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0187947
  5. Transmission of Bacterial Endophytes vol.5, pp.4, 2010, https://doi.org/10.3390/microorganisms5040070
  6. Bacterium-Mediated RNA Interference: Potential Application in Plant Protection vol.8, pp.12, 2010, https://doi.org/10.3390/plants8120572
  7. Symbiotic Performances of Three Mesorhizobium huakuii Strains Inoculated to Chinese Milk Vetch Varieties vol.11, pp.None, 2010, https://doi.org/10.3389/fpls.2020.599400
  8. Plasmids Related to the Symbiotic Nitrogen Fixation Are Not Only Cooperated Functionally but Also May Have Evolved over a Time Span in Family Rhizobiaceae vol.12, pp.11, 2010, https://doi.org/10.1093/gbe/evaa152
  9. Microbial Flow Within an Air-Phyllosphere-Soil Continuum vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.615481