Abstract
The magic square is one of the number arrangements and the sums of each row, column, and diagonal are all equal. The meaning of "方" is "Square". If we don't consider the condition of 'square' then is it possible any number arrangement? There are many special number arrangements such as "magic five number circle(緊五圖)", "magic six number circle(聚六圖)", "magic eight number circle(聚八圖)", "magic nine number circle(攢九圖)", "magic eight camp circle(八陣圖)", "magic nine camp circle(連環圖)" in the ancient Chinese mathematics books such as "楊輝算法", "算法統宗". Also, there is a very special and beautiful number arrangement Jisuguimoondo(地數龜文圖) in the mathematics book "Goosuryak(九數略)" written by Choi suk jung(崔錫鼎) in the Joseon Dynasty. In this study, we introduce a various number arrangements and their properties.
방진 또는 마방진(magic square, 魔方陣)은 정사각형 모양으로 수를 배열하여 가로, 세로, 대각선의 합이 같아지도록 만든 수배열을 말한다. 마방진의 '방'에는 정사각형이라는 의미가 포함되어 있다. 만약 '방' 즉 정사각형이라는 조건을 제거한다면 어떤 수배열이 가능할 것인가? 중국의 "양휘산법"과 "산법통종"에는 취오도(聚五圖)와 취육도(聚六圖), 취팔도(聚八圖), 찬구도(攢九圖), 팔진도(八陣圈), 연환도(連環圖)와 같은 다양한 수배열이 제시되어 있다. 또한 조선 시대 수학자 최석정의 "구수략"에는 지수귀문도(地數龜文圖)라는 독창적이고 아름다운 수배열이 제시되어 있다. 이밖에도 원 모양의 마방진, 별 모양의 마방진 등 다양한 마방진이 존재한다. 본고에서는 이러한 정사각형 형태가 아닌 마방진을 소개하고 이들이 갖는 몇 가지 성질과 이에 대한 활용 방법을 제시하였다.