DOI QR코드

DOI QR Code

Novel 10 GHz Bio-Radar System Based on Frequency Multiplier and Phase-Locked Loop

주파수 체배기와 PLL을 이용한 10 GHz 생체 신호 레이더 시스템

  • Myoung, Seong-Sik (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • An, Yong-Jun (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Moon, Jun-Ho (PhiITech Inc.) ;
  • Jang, Byung-Jun (Department of Electronics Engineering, Kookmin University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • Published : 2010.02.28

Abstract

This paper presents a novel 10 GHz bio-radar system based on a frequency multiplier and phase-locked loop(PLL) for non-contact measurement of heartbeat and respiration rates. In this paper, a 2.5 GHz voltage controlled oscillator (VCO) with PLL is employed to as a frequency synthesizer, and 10 GHz continuous wave(CW) signal is generated by using frequency multiplier from 2.5 GHz signal. This paper also presents the noise characteristic of the proposed system. As a result, a better performance and economical frequency synthesizer can be achieved with the proposed bio-radar system. The experimental results shows excellent bio-signal measurement up to 100 cm without any additional digital signal processing(DSP), and the proposed system is validated.

본 논문에서는 주파수 체배기와 위상 동기화 회로(Phase-Locked Loop: PLL)를 이용한 주파수 합성기를 이용한 10 GHz 대역에서 동작하는 생체 신호 레이더를 제안하였다. 제안된 10 GHz 대역 생체 레이더는 2.5 GHz 전압 제어 발진기와 PLL을 이용하여 발생된 위상 잡음 특성이 매우 뛰어나고 안정적인 정현 신호를 이용하여 뛰어난 생체 신호 검출 성능을 보인다. 또한 10 GHz 대역에서 PLL을 구현하기 어려운 점을 해결하기 위하여 2.5 GHz 대역에서 PLL을 이용하여 발생된 신호를 주파수 체배기를 이용하여 10 GHz 대역 신호를 발생시키는 방법을 제안하였다. 본 논문에서는 제안된 구조의 생체 레이더의 잡음 특성을 이론적으로 분석하여 제안된 구조의 타당성을 검증하였다. 실험 결과 100 cm까지 매우 우수한 생체 신호 검출이 가능하였으며, 이로서 제안된 구조의 10 GHz 대역의 생체 레이더의 타당성을 확인하였다.

Keywords

References

  1. M. C. Budge Jr., M. P. Burt, "Range correlation effects in radars", Record of the 1993 IEEE National Radar Conference, pp. 212-216, Apr. 1993.
  2. M. C. Budge Jr., M. P. Burt, "Range correlation effects on phase and amplitude noise", Proceedings of IEEE Southeastcon, p. 5, 1993. https://doi.org/10.1109/SECON.1993.465731
  3. A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, "Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring", IEEE Trans. Microwave Theory and Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004. https://doi.org/10.1109/TMTT.2004.823552
  4. N. Dung, S. Yamada, B. K. Park, V. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, "Noise considerations for remote detection of life signs with microwave Doppler radar", Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1667-1670, 2007. https://doi.org/10.1109/IEMBS.2007.4352628
  5. A. Droitcour, "Non-contact measurement of heart and respiration rates with a single-chip microwave doppler radar", Ph.D. Thesis, Stanford University, 2006.
  6. A. D. Droitcour, V. M. Lubecke, J. Lin, and O. Boric-Lubecke, "A microwave radio for Doppler radar sensing of vital signs", IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 175-178, May 2001. https://doi.org/10.1109/MWSYM.2001.966866
  7. Yanming Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, "Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band", IEEE Trans. Microwave Theory and Tech., vol. 54, no. 5, pp. 2023-2032, May 2006. https://doi.org/10.1109/TMTT.2006.873625
  8. Byung-Jun Jang, Sang-Hyuk Wi, Jong-Gwan Yook, Moon-Que Lee, and Kyoung-Joung Lee, "Wireless bio-radar sensor for heartbeat and respiration detection", Progress in Electromagnetic Research(PIER) C, vol. 5, pp. 149-168, 2008.
  9. Seong-Sik Myoung, Byung-Jun Jang, Jae-Hyung Park, and Jong-Gwan Yook, "2.4 GHz bio-radar system with improved performance by using phased-locked loop", IEEE Trans. Antennas and Propagation, 2009(submitted).
  10. Frequency allocations of amateur satellite service, International Telecommunication Union, 2009.

Cited by

  1. UWB Radar and Non-contact Polysomnography vol.10, pp.1, 2015, https://doi.org/10.14372/IEMEK.2015.10.1.33