DOI QR코드

DOI QR Code

Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites

  • Kim, Seong-Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kwon, Oh-Hyeong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Dong-Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • Received : 2010.10.03
  • Accepted : 2010.11.13
  • Published : 2010.12.30

Abstract

Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above $350^{\circ}C$. The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of $-25^{\circ}C$ to $50^{\circ}C$. The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.

Keywords

References

  1. Bourrat, X. Carbon 1993, 31, 287. https://doi.org/10.1016/0008-6223(93)90034-8
  2. Thongruang, W.; Spontak, R. J.; Balik, C. M. Polymer 2002, 43, 3717. https://doi.org/10.1016/S0032-3861(02)00180-5
  3. Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Appli. Surf. Sci. 2003, 217, 181. https://doi.org/10.1016/S0169-4332(03)00550-6
  4. Maruyama, B.; Alam, K. SAMPE J. 2002, 38, 59.
  5. Li, J.; Wong, P.-S.; Kim, J.-K. Mater. Sci. Eng. A 2008, 483/484, 660. https://doi.org/10.1016/j.msea.2006.08.145
  6. Hao, X.; Gai, G.; Yang, Y.; Zhang, Y.; Nan, C.-W. Mater. Chem. Phys. 2008, 109, 15.
  7. Kim, S.; Do, I.; Drzal, L. T. Macromol. Mater. Eng. 2009, 292, 196.
  8. Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Materials 2010, 3, 1089. https://doi.org/10.3390/ma3021089
  9. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Prog. Polym. Sci. 2010, 35, 1350. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  10. Margolis, J. M. "Conductive Polymers and Plastics", Chapman and Hall, New York, 1989, Chapter 1.
  11. Kim. S.; Drzal, L. T. J. Adh. Sci. Tech. 2009, 23, 1623. https://doi.org/10.1163/156856109X440984
  12. Bhardwaj, N.; Kundu, S. C. Biotech. Adv. 2010, 28, 325. https://doi.org/10.1016/j.biotechadv.2010.01.004
  13. D. H. Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216. https://doi.org/10.1088/0957-4484/7/3/009
  14. Deitzel, J. M.; Tan, N. C. B.; Kleinmeyer, J. D.; Rehrmann, J.; Tevault, D.; Reneker, D.; Sendijarevic, I.; McHugh, A. "Generation of Polymer Nanofibers through Electrospinning", U.S. Army Research Laboratory Report, APL0TR-1989, 1999.
  15. Esrafilzadeh, D.; Morshed, M.; Tavanai, H. Synth. Metals 2009, 159, 267. https://doi.org/10.1016/j.synthmet.2008.09.014
  16. Kim, C.; Yang, K. S. Carbon Sci. 2002, 3, 210.
  17. Cho, C. W.; Cho, D.; Ko, Y.-G.; Kwon, O. H.; Kang, I. K. Carbon Lett. 2007, 8, 313. https://doi.org/10.5714/CL.2007.8.4.313
  18. Zhou, Z.; Lai, C.; Zhang, L.; Qian, Y.; Hou, H.; Reneker, D. H.; Fong, H. Polymer 2009, 50, 2999. https://doi.org/10.1016/j.polymer.2009.04.058