DOI QR코드

DOI QR Code

Effect of Heat Treatment on CO2 Adsorption of Ammonized Graphite Nanofibers

  • Received : 2010.02.06
  • Accepted : 2010.03.12
  • Published : 2010.03.30

Abstract

In this work, graphite nanofibers (GNFs) were prepared by ammonia and heat treatment at temperatures up to $1000^{\circ}C$ to improve its $CO_2$ adsorption capacity. The effects of the heat treatment on the textural properties and surface chemistry of the GNFs were investigated by $N_2$ adsorption isotherms, XRD, and elemental analysis. We found that the chemical properties of GNFs were significantly changed after the ammonia treatment. Mainly amine groups were formed on the GNF surfaces such as lactam groups, pyrrole and pyridines. The GNFs treated at $500^{\circ}C$ showed highest $CO_2$ adsorption capacity of 26.9 mg/g at 273 K in this system.

Keywords

References

  1. Reay, D. S.; Dentener, F.; Smith, P.; Grace, J.; Feely, R. A. Nature Geosci. 2008, 1, 430. https://doi.org/10.1038/ngeo230
  2. International Energy Agency, Tracking Industrial Energy Efficiency and $CO_2$ Emissions, OECD/IEA, Paris, 2007.
  3. Aaron, D.; Tsouris, C. Separ. Sci. Technol. 2005, 40, 321. https://doi.org/10.1081/SS-200042244
  4. Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Energy & Fuels 2001, 15, 279. https://doi.org/10.1021/ef000241s
  5. Chatti, R.; Bansiwal, A. K.; Thote, J. A.; Kumar, V.; Jadhav, P.; Lokhande, S. K.; Biniwale, R. B.; Labhsetwar, N. K.; Rayalu, S. S. Mic. Meso. Mater. 2009, 121, 84. https://doi.org/10.1016/j.micromeso.2009.01.007
  6. Yang, H.; Xu, Z.; Fan, M., Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I. J. Environ. Sci. 2008, 20, 14. https://doi.org/10.1016/S1001-0742(08)60002-9
  7. Plaza, M. G.; Pevida, C.; Arias, B.; Fermoso, J.; Arenillas, A.; Rubiera, F.; Pis, J. J. J. Therm. Anal. Calorim. 2008, 92, 601. https://doi.org/10.1007/s10973-007-8493-x
  8. Meng, L.; Cho, K. S.; Park, S. J. Carbon Lett. 2009, 10, 221. https://doi.org/10.5714/CL.2009.10.3.221
  9. Tenney, C. M.; Lastosskie, C. M. Environ. Progress. 2006, 25, 4343.
  10. Moon, S. H.; Shim, J. W. J. Colloid Interface Sci. 2006, 298, 523. https://doi.org/10.1016/j.jcis.2005.12.052
  11. Hu, Y. H.; Ruckenstein, E. Chem. Phy. Lett. 2006, 425, 306. https://doi.org/10.1016/j.cplett.2006.05.059
  12. Chandrasekar, G.; Son, W. J.; Ahn, W. S. J. Porous Mater. 2009, 16, 545. https://doi.org/10.1007/s10934-008-9231-x
  13. Takenaka, S; Kobayashi, S; Ogihara, H; Otsuka, K. J. Catal. 2003, 217, 79.
  14. Seo, M. K.; Choi, K. E.; Park, S. H.; Hong, Y. T.; Park, S. J. Carbon Lett. 2009, 10, 329. https://doi.org/10.5714/CL.2009.10.4.329
  15. Kim, B. J.; Lee, Y. S.; Park, S. J. J. Colloid Interface Sci. 2008, 318, 530. https://doi.org/10.1016/j.jcis.2007.10.018
  16. Park, S. J.; Park, J. M.; Seo, M. K. J. Colloid Interface Sci. 2009, 337, 300. https://doi.org/10.1016/j.jcis.2009.05.028
  17. Lueking A. D.; Pan, L.; Narayanan, D. L.; Clifford, C. E. B. J. Phys. Chem. B. 2005, 109, 12710. https://doi.org/10.1021/jp0512199
  18. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 311, 311. https://doi.org/10.1016/j.jcis.2007.02.059
  19. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 306, 454. https://doi.org/10.1016/j.jcis.2006.10.038
  20. Fonsecaa, D. A.; Gutierrezb, H. R.; Lueking, A. D. Mic. Meso. Mater. 2008, 113, 178. https://doi.org/10.1016/j.micromeso.2007.11.016
  21. Bansal, R. C.; Donnet, J. B.; Stoeckli, H. F. "Active Carbon", Marcel Dekker, New York, 1988, 27.
  22. Yoon, S. H.; Lim, S.; Song, Y.; Ota, Y.; Qiao, W.; Tanaka, A.; Mochida, I. Carbon 2004, 42, 1723. https://doi.org/10.1016/j.carbon.2004.03.006
  23. Park, S. J.; Jung, W. Y. Carbon 2002, 40, 2021. https://doi.org/10.1016/S0008-6223(02)00040-4
  24. Macia-Agullo, J. A.; Moore, B. C.; Cazorla-Amoros, D.; Linares-Solano, A. Mic. Meso. Mater. 2007, 101, 397. https://doi.org/10.1016/j.micromeso.2006.12.002
  25. Mangun, C. L.; Benak, K. R.; Economy, J.; Foster, K. L. Carbon 2001, 39, 1809. https://doi.org/10.1016/S0008-6223(00)00319-5
  26. Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Energy & Fuels, 2002, 16, 1463. https://doi.org/10.1021/ef020058u

Cited by

  1. Necessity of Development on New Types of Activated Carbons for Advanced Drinking Water Purification Technology vol.11, pp.4, 2010, https://doi.org/10.5714/CL.2010.11.4.357
  2. storage vol.12, pp.4, 2011, https://doi.org/10.5714/CL.2011.12.4.236
  3. A Study of the Optimum Pore Structure for Mercury Vapor Adsorption vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1507
  4. Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3377