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Abstract This paper addresses a design issue of “model complexity and performance 
trade-off” in the application of bandwidth extension (BWE) methods to the intra-frame 
predictivevector quantization problem of wideband speech. It discusses model-based linear and 
non-linear prediction methods and presents a comparative study of them in terms of prediction 
gain. Through experimentation, the general trend of saturation in performance (with the 
increase in model complexity) is observed. However, specifically, it is also observed that there 
is no significant difference between HMM and GMM-based BWE functions.
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1. Introduction1)

It is well known that there is mutual information between 
frequency bands in speech[1], so a prediction system can be 
developed to exploit the mutual information. For example, 
in[2], the upper-band information of 4-8 kHz is predicted 
based on the  lower-band information of 0-4 kHz using a 
codebook mapping and the resulting prediction residual of 
upper-band is vector quantized (VQ) by a secondary 
codebook. Test results show that this conditional (or 
intra-frame predictive) VQleads to a codinggain of appro-
ximately 1 bit over a simple VQ. Similar approach also can 
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be seen in[3], where Geiser et al. employ a linear mapping 
function for the same purpose and reports a good performance 
satisfying the target bit-rate of 400 bps.

So far, various estimation functions that exploit the mutual 
information between frequency bands have been developed in 
the area of bandwidth extension (BWE) [4]. All of them 
could be classified into three categories: (1) linear mapping, 
(2) codebook mapping, and (3) hidden Markov model (HMM) 
based mapping. In particular, the codebook mapping canbe 
represented by the Gaussian mixture model (GMM) based 
mapping since this algorithmallows for much more flexible 
clustering than the conventional hard-classification ones[5]. It 
is shown in[4] that the HMM framework has certain parallels 
with all other existing functions under proper conditions, and 
thus, roughly, it could be said that the HMM method is the 
most generalized mapping function and perform at least not 
worse than other functions (at the cost of higher complexity).

In this paper, we are interested in further investigating the 
prediction scheme for efficient representation or low bit-rate 
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Fig. 1. Intra-frame predictive vector quantization scheme

coding of the upper-band signals. First, we briefly summarize 
the three representative prediction functions that have been 
mentioned above, and present a comparative study of them to 
see how well they exploit the mutual information (also called 
here intra-frame correlation). This paper is organized as 
follows. In Section 2, an explanation of the intra-frame 
predictive VQ is given as well as a discussion of 
Mel-frequency cepstral coefficients (MFCCs) parameterization. 
In Section 3, the three representative mapping functions are 
briefly reviewed, as well as the factthat the GMM-based 
function can be considered as a special case of HMM-based 
function with a single state. In Section 4, the general trend of 
model complexity and performance trade-off and the 
limitation of complex non-linear function are discussed 
through experimentation. Finally, Section 5 concludes the 
paper.

2. Intra-frame predictive VQ

2.1 Parameterization

In general, it is acknowledged that the human ear is 
insensitive to distortions of the excitation signal at high 
frequencies above 3.4 kHz and the spectral envelope 
informationis more important for the subjective quality [4]. 
Therefore, main concern could be laid on encoding the 
spectral envelope and spectral energy information. In this 
work, MFCC coefficients are used for parameterization of 
speech signals. They are known to be the best in terms of the 
total score of mutual information and separability compared 
to other popular parameters such as line spectral frequencies 
(LSFs) or linear prediction coefficients (LPCs)[4], and, thus, 
more suitable for BWE problem. Moreover, they can be 
equivalently transformed to (perceptually-weighted!) LPC 
coefficients, so usable for speech reconstruction in the decoder 

(see [4] or [6]).Accordingly, without significant loss of 
generality, we use this parameterization for the representation 
of speech signals. 

In the wide-band range of 0-8 kHz, the band of 3.7-8 kHz 
is defined as upper-band, and represented by fifth-order 
MFCCs:

0 1 4[ , ,..., ]Ty y y=y , (1)

where T denotes the transpose operation. The lower-band of 
50 Hz-3.7 kHz which can be filled with fifteen Mel-scale 
filters is represented by the fifteen MFCCs:

0 1 14[ , ,..., ]Tx x x=x . (2)

Note here that the zero-order parameters of y0 and x0 
corresponds to the logarithmic energy of respective frequency 
bands.

2.2 Intra-frame prediction and VQ

As mentioned, the advantage of intra-frame predictiveVQ 
over other VQ methods is achieved mainly by exploiting a 
statistical dependency between frequency bands. Let x be the 

lower-band vector, and y and y% , respectively, be the 
upper-band and estimated upper-band vectors, then the 
residual vector at the mth frame is calculated as follows:

( ) ( ) ( ) ( ) { ( )}m m m m m= − = −r y y y F x% , (3)

where F{·s a mapping function (or BWE function) that 
exploit the statistical dependency between x(m) and y(m). 
Generally, the variance of the residual vector, r(m), is smaller 
than that of the original vector, y(m), so some coding gain 
can be achieved with this approach. The VQ codebook that is 
used to vector quantize the residual signals is trained using 
the well-known LBG algorithm[7].

3. Representative BWE functions

3.1 Minimum mean square error estimation rule

The error criterion that is minimized by the minimum 
mean square estimation (MMSE) rule is the mean square 
error, as follows:
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2{ ( ) ( ) | ( )}MSE E m m mε = −y y Ξ% , (4)

where E{·}denotes the expectation with respect to the 
underlying distribution of y(m) and ||·| denotes the Euclidean 

norm. In addition, ( )m =Ξ { (1), (2),..., ( )}mx x x  denotes 
the sequence of lower-band vectors observed up to the mth 
frame.

3.2 Linear function

If a linear function is used, then F{·}can be represented by 
the following transformation matrix: 

( ) ( )Tm m=y H x% , (5)

and the transformation matrix H is computed by the least 
squares method as follows: 

1( )T T−=H X X X Y , (6)

where the rows of matrix X consist of all the lower-band 
training vectors and the rows of matrix Y consist of all the 
upper-band training vectors that one-to-one correspond to the 
respective row vectors of matrix X. Accordingly, let M be the 
total number of vectors, then the size of X is Mx15, and that 
of Y is Mx5. 

If a sequence of vectors are stationary and ergodic, then 
the time-averaged distortion,

2

0

1 ( ) ( )M

m
m m

M =
−∑ y y% , (7)

converges with probability one to the mean square error MSEε  

as M →∞  (from the ergodic theorem), that is, MSEε  
describes the long-run time-averaged distortion. In this case, 
the least squaresestimation rule is equivalent to the MMSE 
estimation rule. 

3.3 Non-linear functions

In this section, we review the MMSE estimation rule that 
utilizes the trained HMM models, as well as the relation 
between HMM and GMM. Further details on this topic can 
be found in [4] or [8]. Given a statistical model of wideband 

speech, the estimation rule for upper-band information can be 
designed based on the MMSE criterion of Eq. (4): 

*

2*

( )
( ) arg min { ( ) ( ) | ( )}

m
m E m m m= −

y
y y y Ξ

%
% % . (8)

It is well known that the solution of Eq. (8) is the 
conditional expectation called the MMSE estimation rule:

      ( ) { ( ) | ( )}m E m m=y y Ξ%

( ) ( ( ) | ( )) ( )m p m m d m= ∫y y y Ξ y . (9)

Now, with some manipulations on the conditional density 

function ( ( ) | ( ))p m my Ξ  utilizing the states of HMM 
model, Eq. (9) can be modified to be a weighted sum of 
component-wise conditional expectations: 

  
1

( ) ( ( ) | ( )) { ( ) | ( ), ( )}
SN

i i
i

m P S m m E m S m m
=

=∑y Ξ y x% , (10)

where NS denotes the total number of states in the HMM 
model, and Si(m) means that the state of the mth frame is i. 
In particular, this estimation rule is called as the “cascaded 
estimation” rule by Jax, since first the conditional expectation 
E{y(m)| Si(m), x(m)} is calculated for each state, followed by 
an individual weighting with the respective a posteriori 

probabilities, ( ( ) | ( ))iP S m mΞ . Jax also tested a few other 

types of estimation rules under the same MMSE criterion. In 
conclusion, the cascaded estimation rule is the most general 
function of the testedrules with the highest computational 
complexity, thus it is shown to produce the highest 
performance. 

On the other hand, the weighting probability 

( ( ) | ( ))iP S m mΞ  is related to the dynamic modeling ability 

of HMM model since its calculation needs the state 
parameters of HMM model as well as the observation 
parameters. But, the conditional expectation E{y(m)| Si(m), 
x(m)} needs only the observation parameters and, thus,related 
only to the static modeling ability of HMM model. As the 
number of states increases, the weighting probability will be 
gradually refined and the dynamic performance of the 
estimation rule becomesbetter, while this performance will be 
worse as the state number decreases. As an extreme case, if 
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the number decreases to a single state, e.g., S1, then the 

weighting probability becomes 1( ( ) | ( )) 1P S m m =Ξ , and Eq. 

(10) reduces to the simple conditional expectation, 

         1( ) { ( ) | , ( )}m E m S m=y y x%

{ ( ) | ( )}E m m= y x . (11)

Generally speaking, this expectation is an MMSE 
estimation rule that minimizes the following criterion: 

*

2*

( )
( ) arg min { ( ) ( ) | ( )}

m
m E m m m= −

y
y y y x

%
% % , (12)

where, comparing with Eq. (8), it can be known that the 
conditional observation has been changed from the sequence 

( )mΞ  (up to the mth frame) to the vector x(m) at the mth 
frame. As mentioned previously, this conditional expectation 
needs only the observation parameters of HMM model (with a 
single state). Therefore, it can be easily understood that the 
HMM-based estimation rule reduces to the GMM-based 
estimation ruleif the HMM model employs a single state and 
the GMM-based observation density function. If the 
covariance matrix of GMM model is diagonal, then the 
GMM-based estimation rule (or the conditional expectation of 
Eq. (11)) can be simply represented as follows:

|{ ( ) | ( )} ( ) ( ( ) | ( )) ( )E m m m p m m d m= ∫ y xy
y x y y x y

, , , ,1

, , ,1

( ( ); , )

( ( ); , )

L
l l l ll

L
l l ll

f m

f m

ρ

ρ
=

=

= ∑
∑

x x x y

x x x

x μ V μ

x μ V
, (13)

  

where L is the number of GMM components, ,lρx , ,lxμ , and 

,lxV , respectively, denote the prior, the mean vector, and the 
(diagonal!) co-variance matrix of the lth GMM component for 

lower-band vector. In addition, ,lyμ  denotes the mean vector 

of the lthGMM component for the upper-band vector. This 
expression is directly derived from the full co-variance case 
of Eq. (6) of [5], if the cross-covariance matrix between 

vectors x and y (denoted yxC in the paper) is set to be the 
zero matrix from the ‘diagonal’ assumption.

A single and large ergodic HMM is trainedto represent the 

statistical characteristic of wide-band training data, where the 
‘ergodic’ means that the transition from any state to any other 
state shall be possible. The covariance matrix of GMM model 
is approximated with the diagonal matrix since different 
MFCC coefficients are near uncorrelated. The general 
Baum-Welch algorithm is used to train the HMM model, 
starting with VQ initialization as usual (refer to [6] for more 
details).

4. Performance evaluation

4.1 Training data and performance measures

The 16 kHz-sampled TIMIT database is used for training 
and testing [9]. In training, the whole training set (462 
speakers, total 4620 utterances) is used, while only the core 
test set (24 speakers, total 192 utterances) defined in TIMIT 
is used for testing. The utterances are windowed using a 20ms 
Hamming window without over-lap, and then MFCC 
coefficients are extracted from the resulting frames.

The prediction gain (PG) that is the ratio between signal 
energy and prediction-error energy is used for testing the 
performance of prediction methods. It is defined as:

( )22
1010 log ( ) ( )BWE m m

PG m m= ∑ ∑y r  [dB].  (14)

In addition, as a measure for testing quantization 
performance, the Euclidean cepstral distance between the 
original and quantized vectors is used, given by: 

22 ˆ( ) ( ) ( )cepd m m m= −y y [dB].  (15)

As well known [1], [4], this measure is directly related to 
the log spectral distortion (LSD) that is commonly used in 
the area of speech coding:

2
4

2 2
10

0

( )1 20 log ˆ5 ( )
E

cep
k E

H kd LSD
H k=

⎛ ⎞
= ≈⎜ ⎟

⎝ ⎠
∑

, (16)

where EH  and ˆ
EH , respectively, denotethe original and 

quantized Mel-warped spectral envelops. (Note that the frame 
index m is omitted for brevity.)
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GMM HMM
Linear

1x64 1x128 1x256 64x1 128x1 256x1

4.59 4.86 5.13 4.53 4.77 5.03 3.79

Table 1. Prediction gain (in dB) of different GMM and HMM configur-

ations, and linear mapping function
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Fig. 2. BWE prediction gain w.r.t. complexity of GMM function

4.2 Mutual information measurements

The mutual informationmeasurements for six different 
sound classes such as fricatives or vowels are given in [1], 
where they are ranged from 1.09 to 1.60 bits. Although we 
can calculate the total average (i.e., 1.35 bits) from this data, 
this average value does not reflect the difference between 
distributions of the classes. Therefore, we re-calculated it 
using the TIMIT data and with the procedure as in [1]. As a 
result, it was measured a little higher than the above value. 
For example, for three different cases of GMM model, i.e., 
for the total Gaussian number L= 64, 128, and 256, it is 
measured 1.44, 1.56, and 1.69 bits, respectively. It is 
interesting that, as model complexity increases (i.e., better 
fitted to training data), the value increases slightly. So, 
considering this tendency, roughly it could be stated that the 
mutual information of wideband speech (based on 
MFCCparameterization) is near or a little less than 2 bits.

4.3 Test results in terms of prediction gain

As a conclusion, we found that the performance of HMM 
method depends only on the total number of Gaussian 
components of HMM model, but not on any specific 
configuration of the model. For example, for the total 
Gaussian number of NSxL=64 (where NS is the number of 
states and L is that of Gaussian components of each state), 
the HMM configurations such as 64x1, 32x2, 16x4, or even 
1x64 (i.e., GMM) appeared to have almost the same 
performance. Therefore, only the maximum-state cases such as 
64x1 or 256x1 are considered here as the HMM 
configuration. Table 1 shows the prediction gain of a few 
configurations of HMM and GMM functions, as well as the 
result of linear function. As mentioned, the difference between 
HMM and GMM is marginal for the same number of NSxL, 
but they outperform explicitly the linear mapping. Roughly, 
the GMM configuration of 1x9 (of which PG is 3.71 dB) is 
observed to be fairly comparable with the performance of 
linear mapping. An important advantage of linear mapping is 
its simplicity. That is, it requires 15x5=75 multiplications for 

each frame (refer to the matrix operation of Eq. (5)), while 
the GMM function can realize this low complexity under the 
very simple configuration of 1x2 (refer to Eq. (13)). The 
HMM function is basically more complex than the GMM 
function since it needs an additional computation of state 

probabilities, i.e., the weighting probability ( ( ) | ( ))iP S m mΞ

of Eq. (10). It is also interesting to note that, even though 
marginal, the GMM function consistently outperforms the 
HMM function for all cases, as seen in the table. This seems 
to be caused from the local maxima problem of HMM 
training. That is, as the model complexity increases, the 
fully-connected HMM topology is more likely to get trapped 
in local maxima compared to the relatively simple GMM 
method, thus leading to relatively sub-optimal results.

To get a comprehensible indication of a relation of 
prediction gain and (BWE) complexity, it would be helpful to 
draw a scatter plot of them. For the purpose, various PG 
values have been computed by changing the configuration of 
GMM model from NSxL=1x3 to 1x64 (62 cases in total). Fig. 
2 shows the values of prediction gain against the 
configuration of GMM model. It is observed in the figure that 
the prediction gain consistently increases with the 
configuration complexity, but the gain gradually saturates 
around the configuration of 1x30. In the end, the saturation 
limit will be determined by the mutual information between 
frequency bands.

As a conclusion, although the linear prediction is very 
attractive in terms of computational complexity, it is also 
confirmed that the GMM (or HMM) function explicitly 
outperforms the linear mapping with increased complexity. 
Therefore, these non-linear functions could compete with the 
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linear mapping in the applications where the complexity 
requirement is not too strict.

4. 4 Test results of different VQ schemes

Finally, the vector quantizer is integrated with the 
intra-frame predictive scheme and the quantization results of 
respective BWE functions are compared in terms of Euclidean 
cepstral distance. In Fig. 3, ‘G64+VQ’ and ‘L+VQ’, 
respectively, denote the 1x64 GMM function and the linear 
function, each combined with respective VQs. The results for 
HMM are omitted here since they are almost the same as 
those of the corresponding GMM cases. For reference, the 
results for simple VQ are also given in the figure. 

Overall results are consistent with the observations in the 
previous section. It is explicit that the combination of 
intra-frame predictive scheme with the VQ is beneficial for 
overall quantization performance. The GMM function 
consistently outperforms the linear function for all cases, and 
it is also show this difference decreases as the bit-rate 
increases. 

Fig. 3. Performance comparison of intra-frame predictive VQs and 

simple VQ w.r.t. bit-rate.

5. Conclusion

In the application BWE techniques to the intra-frame 
predictive VQ problem of wideband speech, more complex 
statistical algorithms could compete with the simplest linear 
mapping as a tradeoff between efficiency and complexity. It is 
shown that the improvement in performance saturates with the 
increase in model complexity, in particular at around the 
configuration of 1x30. This graph agrees with the general 

tendency of saturation in performance. The comparison of 
GMM and linear function says that the non-linear approach 
could compete with the linear mapping in some applications 
where the complexity requirement is not too strict. However, 
it is observed that there is no significant difference between 
HMM and GMM BWE functions.

Within the scope of this paper, the optimization problem of 
VQ system has not been elaborately examined, and further 
work is required to improve it in conjunction with the 
intra-frame predictive scheme.
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