Production of Biomass and Lipid Using Microalga Nannochloris oculata Under Different Conditions of Nitrogen and Irradiance

미세조류 Nannochloris oculata의 성장과 지질 생산에 미치는 질소 농도와 광량의 영향

  • Park, Sang-Jin (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Choi, Yoon-E (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Kim, Chul-Woong (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Park, Won-Kun (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Yang, Ji-Won (Department of Chemical and Biomolecular Engineering, KAIST)
  • 박상진 (한국과학기술원 생물화학공학과) ;
  • 최윤이 (한국과학기술원 생물화학공학과) ;
  • 김철웅 (한국과학기술원 생물화학공학과) ;
  • 박원근 (한국과학기술원 생물화학공학과) ;
  • 양지원 (한국과학기술원 생물화학공학과)
  • Received : 2010.11.25
  • Accepted : 2010.12.07
  • Published : 2010.12.31

Abstract

Increasing demands on fossil fuel have led to the unprecedented attraction to microalgal biofuel as an alternative energy. In this study, we investigated growth and lipid productions of microalga Nannochloris oculata under various carbon dioxide or nitrogen source concentrations and irradiance conditions. Biomass production of N. oculata was highest under 2% $CO_2$ with 0.3 flow rate (vvm). In addition, biomass productivities were proportional to the concentration of nitrogen source, whereas lipid biosynthesis was suppressed under higher nitrogen concentration (up to 50 mg/L). High irradiation ($160{\sim}180\;{\mu}mol/m^2{\cdot}s$) enhanced growth rate and lipid production of N. oculata.

Keywords

References

  1. Wang, B., Y. Q. Li, N. Wu, and C. Q. Lan (2008) CO2 biomitigation using microalgae. Appl. Microbiol. Biotechol. 79: 707-718. https://doi.org/10.1007/s00253-008-1518-y
  2. Clark, J. H., V. Budarin, F. E. I. Deswarte, J. J. E. Hardy, F. M. Kerton, A. J. Hunt, R. Luque, D. J. Macquarrie, K. Milkowski, A. Rodriguez, O. Samuel, S. J. Tavener, R. J. White, and A. J. Wilson (2006) Green chemistry and the biorefinery: A partnership for a sustainable future. Green Chem. 8: 853-860. https://doi.org/10.1039/b604483m
  3. Kishimoto, M., T. Okakura, H. Nagashima, T. Minowa, S.-Y. Yokoyama, and K. Yamaberi (1994) $CO_{2}$ Fixation and Oil Production Using Micro-Algae. J. Ferment. Bioeng. 78: 479-482. https://doi.org/10.1016/0922-338X(94)90052-3
  4. Chiu, S. Y., C. Y. Kao, C. H. Chen, T. C. Kuan, S. C. Ong, and C. S. Lin (2008) Reduction of $CO_{2}$ by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresour. Technol. 99: 3389-3396. https://doi.org/10.1016/j.biortech.2007.08.013
  5. Chiu, S. Y., C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen, and C. S. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-838. https://doi.org/10.1016/j.biortech.2008.06.061
  6. Um, B. H. and Y. S. Kim (2009) Review: A chance for Korea to advance algal-biodiesel technology. J. Ind. Eng. Chem. 15: 1-7. https://doi.org/10.2298/CICEQ0901001R
  7. AlgaeForBiofuels: Algae Green-Chemicals and Biofuels Business Intelligent Information. http://algaeforbiofuels. com.(2010).
  8. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  9. Huntley, M. E. and D. G. Redalje (2007) $CO_{2}$ mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitig. Adapt. Strateg. Glob. Change 12: 573-608. https://doi.org/10.1007/s11027-006-7304-1
  10. Guillard, R. R. L. (1975) Culture of phytoplankton for feeding marine invertebrates. pp. 26-60. In: Smith, W.L. and M.H. Chanley (eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, USA.
  11. Park, J. Y., Z. M. Wang, D. K. Kim, and J. S. Lee (2010) Effects of water on the esterification of free fatty acids by acid catalysts. Renew. Energ. 35: 614-618. https://doi.org/10.1016/j.renene.2009.08.007
  12. Rodolfi, L., G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  13. Bilanovic, D., A. Andargatchew, T. Kroeger, and G. Shelef (2009) Freshwater and marine microalgae sequestering of $CO_{2}$ at different C and N concentrations - Response surface methodology analysis. Energ. Convers. Manage. 50: 262-267. https://doi.org/10.1016/j.enconman.2008.09.024
  14. Barsanti, L. and P. Gualtieri (2006) Algae: Anatomy, Biochemistry, and Biotechnology. pp. 213-214, CRC Press, Taylor & Francis.