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A Generalization of the Linearized Suffix Tree

to Square Matrices

Joong Chae Naf, Sunho Leeﬂ, Dong Kyue Kim'™*

ABSTRACT

The linearized suffix tree (LST) is an array data structure supporting traversals on suffix trees. We
apply this LST to two dimensional (2D} suffix trees and obtain a space-efficient substitution of 2D
suffix trees. Given an nxn text matrix and an m xm pattern matrix over an alphabet ¥, our 2D-LST
provides pattern matching in 0 {(m®log|£(} time and 0O{(n?) space.
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1. INTRODUCTION

The Linearized Suffix Tree (LST) is an array
representation of a suffix tree based on longest
common prefix (Icp) information [1,2]. The suffix
tree plays a crucial role in various string algo-
rithms [3,4], but its weakness is the size of tree
representation [1]. For a space-efficient sub-
stitution, a suffix array was proposed [5], which
is a simple array of lexicographically sorted
suffixes. Only on the suffix array, the LST simu-
lates traversals on suffix trees.

The LST provides two kind of traverses that
solve important problems in string processing: a

bottom~-up traverse and a top—down traverse [1].
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The bottom~-up traverse is a post-order traversal
on suffix trees in O(n) time by using lep
information. The top~down traverse is a branching
of child with labeled with a character. This branch-
ing takes an additional table of O(n) space and
O(1Z|) time, and it is improved to O{log|Xl) time
by Kim et al [2]. Recently, more space-efficient
suffix trees with rich functions were proposed
[6,78], however these succinct suffix trees depends
on heavy operations of compressed suffix arrays
and auxiliary succinct data structures. Therefore,
the LST has its own advantage in practice.

In this paper, we apply the LST to Two
Dimensional (2D) matrices. Given nxn sguare ma-
trix over alphabet %, 2D suffix trees were defined
[9] and a linear time, i.e., O(n®) time, construction
algorithm was proposed [10]. This tree representa-
tion has also the weakness of space complexity as
in one dimensional suffix trees. Moreover, the 2D
suffix trees define Lstrings or Istrings as compar-
ison units, which are n-length substrings of rows
and columns of a matrix. To compare these n-
length substrings, the 2D suffix trees build extra
data structures such as tries for branching sub-
strings and suffix trees for all rows and columns.
Using the linearized 2D suffix trees, we replace
these complex data structures with only arrays of
sorted suffixes and lep-lengths.
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Our contribution is a generalization of the LST
for two dimensional square matrices. By introduc-
ing refined lep-lengths that represent lengths of
prefixes by units of characters on X, we obtain the
generalization to two dimensional suffix trees. Our
2D-LST simulates traversals on 2D suffix trees so
provides pattern matching for mxm matrices in

O(m? log|x1) time and O(n®) space.

2. PRELIMINARIES

2.1 Istring for Square Matrices

We first introduce basic notations for two di
mensional suffix trees and suffix arrays. Let 4 be
an nXn square matrix over an alphabet . This
matrix 4 is assumed to have distinct and unique
characters in its last column and row. We trans-
form the matrix A into a linear string 74 as in
Figure 1. This transform divides A into [-shaped
strings called Icharacters [9,10]. An Icharacter
from the k-th column is its prefix of length k& and
one from the k-th row is its prefix of length £ —1.

By interleaving these Icharacters from rows and
columns, we obtain the linear string 74 called an
Istring. The lIstring 74 is a string of 2n—1
Icharacters; we use notations 7A[i] for the i~th
Icharacter and 74/[i.j] for the substring from
TAli] to TA[jl. A general substring 74li.j] is
called an Isubstring, and 7A[1..5] is an Iprefix. We
also regard 74l as a string, so JA[i[k} is the
k~th character of TA[i] and 7A4[i][k..1] is the sub-
string from 7A4[i][&] to 7A4[:]{{].

Given two Istrings 7X and 7Y , the Longest
Common Prefixes (lcps) are defined on  Icharacters

and on characters. The lcp on Icharacters called

13578
@E_a JA= a b ba cb aba beb babe 8,88, #itoratt:
2l :b a#1 JA{1.5)= a b ba cb aba
1B :

SEcHloh IA(E): babc
EE e [ANLY = ba

Fig. 1. Transform from matrix A to string /A.

llcp gives the length of common Iprefixes, ie., an
Ticp-length | means IXUj{1..1]= r¥Ulit.4]. The
refined lep on characters called Elep specifies the
common prefixes between final Icharacters, ie., an
Elep-length of a pair (,h) means 7X[j[1..R]=
=7y[1n] and 7X[1.0-1]=7¥[1..1-1]. Any
Elcp-length (I,h) for 0 < h < [é l gives the same
lep-length [—1. The Elep-length {4, {é ‘ ) is
equivalent to (I++1, 0), because ZX[1] is a string of

{é i characters.

2.2 lsuffix Tree and Isuffix Array

Given the nxn matrix 4, a suffix 4, ; is defined
as the largest square submatrix of A starting at

position (7). 4, , is an {xI matrix such that
I=n—max(i j}. Let 74, ; denote the Istring of 4,
and 74, is called an Isuffix.

Then, an Isuffix tree of 4 is a compacted patrica
trie for all Isuffixes of 4 [9,10]. A leaf node corre-
sponds to an Isuffix 74, . An internal node has
at least two children and each child is labeled with
an Isubstring of an Isuffix, and the path from the
root to an internal node represents a common
Iprefix between Isuffixes. See Figure 2.

An Isuffix array of 4 is a lexicographically sort-
ed array of Isuffixes of A [11]. For any two
[suffixes of 4, one cannot be the other’'s proper
prefix because of the distinct characters in the last
row and column. Hence, an Isuffix 74, ; has its
own rank in the Isuffix array.

The Isuffix array consists of two components:
POS and LCP. The array POS keeps positions of
Isuffixes in lexicographical order such that POS [}
is position (i,5) of the Isuffix 743, j) with rank &.
The array LCP contains lep-lengths such that
LcPlkl is the lep-length between Isuffixes at
POS[k—1] and POSk|. For the lep-lengths, we will
use refined lcp-lengths, ie., Elcp-lengths. See

Figure 3.
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Fig. 2. Isuffix trees of square matrix A.

Index | POS LCP Isuffixes
Y ab ##,
2 | (L.3) | 20) |abbaab##i
3 (L1 | (30) {ab bacb aba bech babc
4 (2.2) | (4 2) {ab bacb abc $,$3%4 $:$,$:%4
5 | (3.3) | 1) |abbc $:8, #itits
6 41 | 00 |b$ c$,
7 @3 L0 b,
8 | (L4) | (LO) |ba##
9 (1,2) | (2,0) |baab ba bab cbc ##,#;#,
10 | 23) | 3. 1) |baab bc ###,
11 (3,4 | (1,0) |bc##,
12 | 32 | 20) {bcab $3$; bes,
13 (2.1 | (3,0) {bcabbc bab $;$,$; abc$,
14 4,2 | (0 0) {c$bss
15 @.4) | (1,0) [c$,#4s
16 3,1 | (10 jcbbc$:9,abs;

Fig. 3. Isuffix arrays of square matrix A.

3. GENERALIZATION OF LINEARIZED
SUFFIX TREES

In this section, we generalize the Linearized
Suffix Trees (LST) to two dimensional Isuffix
arrays. The LST represents a node of suffix trees
by an interval on LCP array. By visiting an inter—
val in a certain order, the LST simulates two kind
of traversals on suffix trees: bottom-up traversal

and top-down traversal [1].

We show that these two traversals are still pos—
sible on Isuffix arrays. The bottom-up traverse
visits intervals of LCP array in post-order. In fact,
this bottom—up traversal can be applied to a gen—
eral compacted trie, so we directly apply the tra-
verse to our Isuffix arrays.

The top-down traversal is based on a branching
function, xld(v,a), that returns the child of v la-
beled with Icharacter «. Using the techniques in
[2], we process xld(v,a) in Ocllog!Zl) time and
O(n?) space. Hence, given a m<m pattern matrix,
we find the occurrences of the pattern in
O(m? log| £|) time.

A problem is that a branching Icharacter is an
n-length substring of rows or columns, not a char-
acter in X. One solution was an internal trie for
branching Icharacters [9], however our 2D-LST
supports a simple branching function based on
tables.

3.1 Lcp-interval Tree

An Icp-interval tree is a conceptual tree defined
by parent-children relationship of lcp-intervals.
Figure 4 shows an example of lcp interval trees

for strings. We define general lcp-intervals on lex—
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Fig. 4. The Icp-interval tree and LCP array of square matrix A.
icographically sorted strings and show an lep-intervals form a tree.

one-to-one mapping between lcp-interval trees
and compacted tries. Thus, we obtain conceptual
Isuffix trees from Isuffix arrays and lcp arrays.

Given
5, Sy e

lexicographically sorted  strings,
,5,, let L be an array whose element L[]
is the length of lcp between §,_, and S. An lcp-in-

terval [i..j] is defined as follows.

Definition 1 An interval [i..5] is an lcp-interval
with length | if ILlil<l, I[j+1]<,
minZ[i+1.. j|= 1. A singleton li| is an lcp-interval
with the length of S,

and

An lcp-interval [i..5] has disjoint sub-intervals,
which are defined by a position ¢, such that Ll ]=1.
Let ¢, ¢, ..., ¢ are the positions such that Zl¢]=1

for 1<i<k Then, all disjoint sub-intervals

i, —1l1g, ¢, =1}, ..., [ 5] become lcp-intervals
with length 1" > 1. We regard these sub intervals

as children of an lcp-interval [i..j]. Hence, the

This lep-interval tree corresponds to a com-—
pacted trie representing all strings S,’s. So, all tra-
versals on the lecp—interval tree simulate those on
the compacted trie.
Given

Lemma 1 lexicographically sorted

strings, 8, Sy -, S, all nodes of the lcp-interval
tree is one-to—one mapped to the compacted trie

representing all 8, for 1<i<n

Proof. We show an one-to—-one map between the
lcp-interval tree and the compacted trie by an
induction. First, we define one—to—one map be—
tween the lcp-interval [1..n] and the root node of
compacted trie 7;. Next, we show one-to-one
maps for children of a parent node, which has been
already mapped.

Let » be a node of compacted trie and [i..j] is
the corresponding lcp-interval with length I. Note

that §;,.5,,,,.....5; have the longest common prefix
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of length 1.

1) Trie nodes to lep-intervals: If v’ be a child
node of v with label o, then there exists strings
of 8,8 4,8 with the longest common prefix
of length I'=I+lal. The interval [¢..§] is an
lcp-interval with length [, because ZLii] <1,
Li+1] <V, and minZl¢..7]=1. Since I > 1, [i..§]
is a sub~interval of [i..j].

i) Lep-intervals to trie nodes: If [+..5] is an
length /, then
Sy Sy 415> 8 have the longest common prefix of

lep-interval  with strings
length 7'. This prefix should make a node in the
trie Ty. O

The bottom-up traverse algorithm [1] visits
conceptual lep-interval trees in a post-order by
comparing height information in £ array. The al-
gorithm returns a sequence of lep-intervals in the
post-order visiting. We refer to [1] for details. By
Lemma 1, the traverse algorithm now finds a
post-order visiting for a general compacted trie.

Note that there are two levels of lcp information
in our Tsuffix arrays. If we use only llcp-lengths,
then we obtain the bottom-up traverse of Isuffix
trees. A Refined Elcp-lengths are introduced to
provide a top-down traverse, i.e., a node branching.

3.2 Child Table

For the top—down traverse [1,2] in lcp-interval
trees, we need a branching function xtd([i..7], a)
that returns the child Icp-interval of [i..j] labeled
with Icharacter o. The problem is that an
Icharacter is actually an n-length string on £, A
solution was an explicit internal trie in Isuffix trees
by Giancarlo [9], however the lcp-interval tree on
LCP array is a simple representation of the trie as
we shown in Lemma 1. By using child tables of
Oln?) space, we provide an OflalloglZ]) time
branching function. For a complete description, we
start with a brief of the child tables. Figure 5 shows
an example of LST (including child tables) for
strings.

Given an lep-interval {4..5} and its (k+1) disjoint
sub-intervals, let ¢ be the starting index of the
(i+1)—th sub—interval, i.e., li..4] has &+1 sub-in-
tervals [i..c;— 1], 1, .. ¢~ 1), .. le, .. 4] There are two
methods organizing the child table CZD: linked lists
{1] and binary trees [2].

The linked lists representation [1].make CLD 4}
to point the next sibling j+1 and CLD[j] to point
second child ¢. For each iterval [g..q,,—1],
CLDlc,] recursively points its next sibling ¢;; ; and
CLD ¢, ., —1] points its second child. The exception
is the first interval [i..c, —1] and the last interval
le,..5]. The first interval has only child pointer
CLD e, — 1], and the last interval keeps child pointer
at CLDle,— 1]. Because the interval [4..j] occupies
only entries of CLD at 4, j, and ¢, —1, ¢sy g, — Ly g,
we can recursively avoid conflicts to sub-intervals
in the child table.

The binary trees representation [2] is a refine-
ment to find a child in logarithmic time. For an in—
terval [i..j] and sub-interval indices ¢’'s, we
choose a middle index ¢, . We store ¢, at CLD)
if [i..j] is a right-interval, or store at CLD{j] if
{i..j] is a left-interval. Then, the sub-interval
lic, —1] is a left-interval of [4..4], so CLD[c, ~1]
points a new middle index from ¢ to ¢,_;. The
right sub-interval [c, .. 7] make CLDIc,] to keep the
next middle index from ¢,., to ¢_,. Finally, all
sub-intervals [¢..¢,, —1]'s occupies the same en-
tries of CLD as the linked list representation, so
there is no conflict in CLD [2].

Remark that the binary tree representation in
sert some intermediate intervals, which is an union
of sub-intervals, without conflicts in table CLD.
Given an lcp-interval and its disjoint sub-inter—
vals, the entries used in CZLD are fixed by the
sub-intervals. Therefore, we can insert to table
CLD any intermediate lcp—interval that is an union

of sub-intervals.

Lemma 2 [1,2] Any intermediate lcp-interval
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Fig. 5. A part of the Icp-interval tree, its corre-
sponding part of the modified Icp-interval tree that
uses the complete binary tree for node branching.

tree with k ledf intervals occupies its own Olk) en—
tries in table CLD.

The branching function xld([i..j],a) is straight-
forward by Lemma 1 and 2. Let us consider an in—
termediate Icp-interval tree made from refined
lep-values (I, k) with the same Tlcp—value . Since
this tree is made from the lcp-values h's of the
(I41)-th Icharacter, the tree corresponds to a com-
pacted trie representing all (I+1)-th Icharacters by
Lemma 1. The tree has a root interval with Iprefix
of length | and leaf intervals with Iprefix of length
I+1. By Lemma 2, it is embedded in table CLD
without conflicts to the Ilcp-interval tree on
llcp-values, i.e., the Isuffix tree. There are n® sin-
gleton intervals, so the size of CLD is O(n?). Then,
we follow the tree by comparing the A-th charac-
ter, where h is the lcp-value given by an inter—
mediate interval [2], so xd([i.jl,a) takes
O(lallog 1)) time.

Lemma 3 The branching function xld(li.j), a)
takes Ollallog|XZl) time in space of On®).

4. CONCLUSION

In this paper we proposed a 2D-LST based on
2D suffix arrays with refined lep information. Our
lcp arrays require a refined lep—value, which is full
description of the lcp between suffixes of square
matrices. We showed that an Icp-interval tree is
generalized to 2D suffix trees and that the traversal
algorithms on the lcp-interval tree simulates tra-
versals on 2D suffix trees. So, we provide
Olm?log|X|) time pattern matching by top—down
traversal of 2D-LST. Our results made a step to
ward space-efficient substitutions of complex 2D

suffix trees.
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