DOI QR코드

DOI QR Code

Tecto-reticulospinal pathway (TRS)와 dorsal lateral geniculate nucleus (dLGN)에서 역행성이동추적물질 이용 햄스터 상구에서 GluR1-, GluR4- 면역반응 신경세포 연구

Retrograde Tracer Studies of Tecto-Reticulospinal Pathway and Dorsal Lateral Geniculate Nucleus on GluR1- and GluR4-Immunoreactive Neurons in the Hamster Superior Colliculus

  • 최재식 (경북대학교 자연과학대학 생물학과) ;
  • 이제영 (경북대학교 자연과학대학 생물학과) ;
  • 장유진 (경북대학교 자연과학대학 생물학과) ;
  • 이은실 (경북대학교 자연과학대학 생물학과) ;
  • 전창진 (경북대학교 자연과학대학 생물학과)
  • Choi, Jae-Sik (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Jea-Young (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Jang, Yu-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Eun-Shil (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Jeon, Chang-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
  • 발행 : 2010.01.30

초록

본 연구자들의 앞선 연구에서는 햄스터 상구에서 AMPA 수용체의 아형인 GluR1과 GluR4의 분포와 눈 적출 이후 이들 수용체의 분포를 면역세포화학적 방법으로 연구하였다. 또한, 표지한 GluR1과 GluR4를 칼슘결합단백질인 calbindin D28K, calretinin, parvalbumin과 GABA로 표지하여 비교하였다. 본 연구에서 역행성이동추적물질(retrograde tracer)인 호스래디시퍼옥시다아제(horseradish peroxidase, HRP)를 상구의 각 주요 상행로와 하행로에 주입함으로써 GluR1- 면역반응 신경세포들과 GluR4- 면역반응 신경세포들이 투사신경세포(projection neurons)임을 밝혀내었다. Tecto-reticulospinal pathway (TRS)와 dorsal lateral geniculate nucleus (dLGN)으로 HRP 를 주입한후, 햄스터들은 회복을 위해 48시간 동안 살려둔 뒤 관류(perfusion)하였다. GluR- 면역반응 처리된 절편들은 역행성 표지된 신경세포를 지님을 확인하였다. HRP를 주입하였더니 단지 적은 수의 GluR1- 면역반응 신경세포들이 TRS (1.4%)와 dLGN (2.6%)으로 투사되었고, 반면에 많은 수의 GluR4- 면역반응 신경세포들이 TRS (32.7%)로 투사되었다. 사이/투사 신경세포(inter/projection neurons)들은 GluR 아단위들의 분류된 분포와 차별화된 양상을 보였고 이들의 이러한 분포는 칼슘결합단백질들과 GABA와는 겹쳐지지 않았으며, 일전에 발표했던 시각적 행동 반응에서 안구 적출 후 수용체 아단위들의 기능적 다양화와는 차별화된 양상을 보였다.

We recently reported the distributions of AMPA ($\alpha$-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptor subtypes glutamate receptors (GluR) 1 and GluR4 in the superior colliculi (SC) of hamsters with antibody immunocytochemistry and the effect of enucleation on these distributions. We also compared these labelings to those of calcium-binding proteins calbindin D28K, calretinin, parvalbumin, and GABA. In the present study, we investigated whether the GluR1- and GluR4-immunoreactive (IR) neurons are interneurons or projection neurons by injection of the retrograde tracer horseradish peroxidase (HRP) into one of each major ascending and descending pathways of the SC. HRP injections were made into a tecto-reticulospinal pathway (TRS) and dorsal lateral geniculate nucleus (dLGN). Animals were then allowed to recover and to survive for 48 hr before perfusion. Sections containing retrograde-labeled neurons were then treated for GluR-immunoreactivity. HRP injections proved that only a small population of the GluR1-IR cells project into TRS (1.4%) and dLGN (2.6%). However, a large subpopulation of GluR4-IR cells project into TRS (32.7%). The differential compositions of inter/projection neurons, along with our previous studies on the separate distribution of the GluR subunits, its differential co-localization with calcium-binding proteins and GABA, and differential reactions to enucleations, strongly imply the functional variety of the receptor subunits in visual behavior responses.

키워드

참고문헌

  1. Celio, M. R. 1990. Calbindin d-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375-475. https://doi.org/10.1016/0306-4522(90)90091-H
  2. Choi, J. S., J. Y. Lee, and C. J. Jeon. 2009. Glutamate receptor GluR1 and GluR4 in the hamster superior colliculus: distribution and co-localization with calcium-binding protein and GABA. Acta Histochem. Cytochem. 42, 29-38. https://doi.org/10.1267/ahc.08035
  3. Graham, J. and V. A. Casagrande. 1980. A light microscopic and electron microscopic study of the superficial layers of the superior colliculus of the tree shrew (Tupaia glis). J.Comp. Neurol. 191, 133-151. https://doi.org/10.1002/cne.901910108
  4. Grantyn, A. A. and A. K. Moschovakis. 2004. Structurefunction relationships in the superior colliculus of higher mammals. pp. 107-145, In Hall, W. C. and A. Moschovakis (eds.), The Superior Colliculus, CRC Press Inc., Boca Raton.
  5. Grantyn, R. 1988. Gaze control through superior colliculus: structure and function. Rev. Oculomot. Res. 2, 273-333.
  6. Graybiel, A. M. 1978. Organization of the nigrotectal connection: An experimental tracer study in the cat. Brain Res. 143, 339-348. https://doi.org/10.1016/0006-8993(78)90573-5
  7. Graybiel, A. M. 1978. A stereometric pattern of distribution of acetylcholine-esterase in the deep layers of the superior colliculus. Nature 272, 539-541
  8. Gutierrez-Igarza, K., D. J. Fogarty, F. Perez-Cerda, F. Donate-Oliver, K. Albus, and C. Matute. 1996. Localization of AMPA-selective glutamate receptor subunits in the adult cat visual cortex. Vis. Neurosci. 13, 61-72. https://doi.org/10.1017/S0952523800007136
  9. Hall, W. C., D. Fitzpatrick, L. L. Klatt, and D. Raczkowski. 1989. Cholinergic innervation of the superior colliculus in the cat. J. Comp. Neurol. 287, 495-514. https://doi.org/10.1002/cne.902870408
  10. Harrell, J. V., R. B. Caldwell, and R. R. Mize. 1982. The superior colliculus neurons which project to the dorsal and ventral lateral geniculate nuclei in the cat. Exp. Brain Res. 46, 234-242. https://doi.org/10.1007/BF00237181
  11. Harting, J. K. 2004. Puffs and patches: a brief chronological review. pp. 83-105, In Hall, W. C. and A. Moschovakis (eds.), The Superior Colliculus, CRC Press Inc., Boca Raton.
  12. Harting, J. K., B. V. Updyke, and D. P. Van Lieshout. 1992. Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J. Comp. Neurol. 324, 379-414. https://doi.org/10.1002/cne.903240308
  13. Hollmann, M. and S. Heinemann. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  14. Huerta, M. F., A. Frankfurter, and J. K. Harting. 1983. Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J. Comp. Neurol. 220, 147-167. https://doi.org/10.1002/cne.902200204
  15. Huerta, M. F. and J. K. Harting. 1984. The mammalian superior colliculus: studies of its morphology and connections. pp. 687-772, In Vangega, H. (ed.), The Comparative Neurology of the Optic Tectum, Plennum Press Inc., New York.
  16. Hume, R. I., R. Dingledine, and S. F. Heinemann. 1991. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028-1031. https://doi.org/10.1126/science.1653450
  17. Illing, R. B. 1996. The mosaic architecture of the superior colliculus. Prog. Brain Res. 112, 17-34. https://doi.org/10.1016/S0079-6123(08)63318-X
  18. Isa, T. 2002. Intrinsic processing in the mammalian superior colliculus. Curr. Opin. Neurobiol. 12, 668-677. https://doi.org/10.1016/S0959-4388(02)00387-2
  19. Isa, T. and S. Sasaki. 2002. Brainstem control of head movements during orienting; organization of the premotor circuit. Prog. Neurobiol. 66, 205-241. https://doi.org/10.1016/S0301-0082(02)00006-0
  20. Jeon, C. J. and R. R. Mize. 1993. Choline acetyltransferase- immunoreacitive patches overlap specific efferent cell groups in the cat superior colliculus. J. Comp. Neurol. 1, 127-150.
  21. Jonas, P., C. Racca, B. Sakmann, P. H. Seeburg, and H. Monyer. 1994. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281-1289. https://doi.org/10.1016/0896-6273(94)90444-8
  22. Kawamura, S., N. Fukushima, S. Hattori, and M. Kudo. 1980. Laminar segregation of cells of origin of ascending projections from the superficial layers of the superior colliculus in the cat. Brain Res. 184, 486-490. https://doi.org/10.1016/0006-8993(80)90815-X
  23. Kerr, R. C., D. J. Maxwell, and A. J. Todd. 1998. GluR1 and GluR2/3 subunits of the AMPA-type glutamate receptor are associated with particular types of neuron in laminae I-III of the spinal dorsal horn of the rat. Eur. J. Neurosci. 10, 324-333. https://doi.org/10.1046/j.1460-9568.1998.00048.x
  24. Kharazia, V. N., R. J. Wenthold, and R. J. Weinberg. 1996. GluR1-immunopositive interneurons in rat neocortex. J.Comp. Neurol. 368, 399-412. https://doi.org/10.1002/(SICI)1096-9861(19960506)368:3<399::AID-CNE6>3.0.CO;2-0
  25. Kondo, M., R. Sumino, and H. Okado. 1997. Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. J. Neurosci. 17, 1570-1581.
  26. Kwok, K. H., Y. C. Tse, R. N. Wong, and K. K. Yung. 1997. Cellular localization of GluR1, GluR2/3 and GluR4 glutamate receptor subunits in neurons of the rat neostriatum. Brain Res. 778, 43-55. https://doi.org/10.1016/S0006-8993(97)00950-5
  27. Lane, R. D., D. M. Allan, C. A. Bennett-Clarke, D. L. Howell, and R. W. Rhoades. 1997. Projection status of calbindin- and parvalbumin-immunoreactive neurons in the superficial layers of the rat's superior colliculus. Vis. Neurosci. 14, 277-286. https://doi.org/10.1017/S095252380001141X
  28. Leranth, C., Z. Szeidemann, M. Hsu, and G. Buzsaki. 1996. AMPA receptors in the rat and primate hippocampus: a possible absence of GluR2/3 subunits in most interneurons.Neuroscience 70, 631-652. https://doi.org/10.1016/S0306-4522(96)83003-X
  29. McDonald, A. J. 1996. Localization of AMPA glutamate receptor subunits in subpopulations of non-pyramidal neurons in the rat basolateral amygdala. Neurosci. Lett. 208, 175-178. https://doi.org/10.1016/0304-3940(96)12585-4
  30. Michaelis, E. K. 1998. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369-415. https://doi.org/10.1016/S0301-0082(97)00055-5
  31. Mize, R. R., C. J. Jeon, G. D. Butler, Q. Luo, and P. C. Emson. 1991. The calcium-binding protein calbindin-D28K reveals subpopulations of projection and interneurons in the cat superior colliculus. J. Comp. Neurol. 307, 417-436. https://doi.org/10.1002/cne.903070307
  32. Morin, L. P. and R. I. Wood. 2001. Stereotaxic Atlas of the Golden Hamster Brain. Academic Press Inc., San Diego.
  33. Murray, E. A. and J. D. Coulter. 1982. Organization of tectospinal neurons in the cat and rat superior colliculus. Brain Res. 243, 201-214. https://doi.org/10.1016/0006-8993(82)90243-8
  34. Nabors, L. B. and R. R. Mize. 1991. An unique neuronal organization in the cat pretectum revealed by antibodies to the calcium-binding protein calbindin-D 28k. J. Neurosci. 11, 2460-2476.
  35. Park, W. M., M. J. Kim, and C. J. Jeon. 2004. Ionotropic glutamate receptor GluR2/3-immunoreacitive neurons in the cat, rabbit, and hamster superficial superior colliculus. Neurosci. Res. 49, 139-155. https://doi.org/10.1016/j.neures.2004.02.009
  36. Sahibzada, N., D. Yamasaki, and R. W. Rhoades. 1987. The spinal and commissural projections from the superior colliculus in rat and hamster arise from distinct neuronal populations. Brain Res. 415, 242-256. https://doi.org/10.1016/0006-8993(87)90206-X
  37. Sheng, M. and M. J. Kim. 2002. Postsynaptic signaling and plasticity mechanisms. Science 298, 776-780. https://doi.org/10.1126/science.1075333
  38. Song, I. and R. L. Huganir. 2002. Regulation of AMPA receptors during synaptic plasticity. Treands Neurosci. 25, 578-588. https://doi.org/10.1016/S0166-2236(02)02270-1
  39. Sparks, D. L. 1999. Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr. Opin.Neurobiol. 9, 698-707. https://doi.org/10.1016/S0959-4388(99)00039-2
  40. Weber, J. T., G. F. Martin, M. Behan, M. F. Huerta, and J. K. Harting. 1979. The precise origin of the tectospinal pathway in three common laboratory animals: a study using the horseradish peroxidase method. Neurosci. Lett. 11, 121-127. https://doi.org/10.1016/0304-3940(79)90114-9
  41. Whitlock, J. R., A. J. Heynen, M. G. Shuler, and M. F. Bear. 2006. Learning induces long-term potentiation in the hippocampus. Science 313, 1093-1097. https://doi.org/10.1126/science.1128134