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FINITENESS THEOREMS FOR 2-UNIVERSAL HERMITIAN

LATTICES OVER SOME IMAGINARY QUADRATIC FIELDS

Poo-Sung Park

Abstract. A positive definite Hermitian lattice is said to be 2-universal

if it represents all positive definite binary Hermitian lattices. We find

some finiteness theorems which ensure 2-universality of Hermitian lattices
over several imaginary quadratic number fields.

1. Introduction

Since the celebrated Lagrange’s Four Square Theorem, an important sub-
ject is positive definite quadratic forms which represent all positive integers.
This subject was studied by many mathematicians, for instance Jacobi, Pepin,
Liouville, etc. In particular, Ramanujan found all 54 positive definite integral
quaternary diagonal forms represent all positive integers. Dickson called such
quadratic forms universal.

In 1948, Willerding investigated the universal classically integral quaternary
forms and found 178 such forms in her dissertation [11]. In her dissertation
she had to check as many as 1046 quaratic forms and the methods are too
complicated to be verified. Indeed, her list contains some mistakes, but the
correction was performed in the different directions.

In 1993, Conway and Schneeberger proved the so-called Fifteen Theorem
which ensures the universality of positive definite classically integral quadratic
forms. It states that if a positive definite quadratic form represents 1, 2, 3, 5,
6, 7, 10, 14, and 15, then it represents all positive integers. This astounding
theorem enables them to check Willerding’s list. Consequently, they obtain 204
positive definite universal quaternary classically integral quadratic forms.

After several years, Bhargava proposed a simpler and more elegant proof
than Conway and Schneeberger’s original one. Besides he insisted that for
every infinite subset S of N, there is a finite subset S0 of S such that if a
positive definite quadratic form represents all elements of S0, then it represents
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all elements of S. For instance, if a positive definite quadratic form represents
odd integers from 1 through 33, then it represents all odd integers. Such
criterions are called Finiteness Theorems.

This criterion was generalized and was proved in the view of a natural ana-
logue of Bhargava’s results for representation of forms by forms by M.-H. Kim,
B. M. Kim and B.-K. Oh [4]. That is, for every infinite set S of positive definite
quadratic forms of rank n, there exists a finite subset S0 of S such that if a
quadratic form represents all elements of S0, then it represents all elements of
S. Since a positive integer a can be considered as a quadratic form ax2, this is
a generalization of Bhargava’s assertion.

In particular they found a criterion for quadratic forms which represent all
binary quadratic forms [5]: if a quadratic form represents all of

x2 + y2, 2x2 + 3y2, 3x2 + 3y2,
2x2 + 2xy + 2y2, 2x2 + 2xy + 3y2, 2x2 + 2xy + 4y2,

then it represents all binary quadratic forms.
The idea of finiteness theorems has been applied to Hermitian lattices. Re-

cently, the author and the collaborators succeeded in proving the Fifteen The-
orem for Universal Hermitian Lattices. By this theorem it is enough to see
whether a Hermitian lattice represents 1, 2, 3, 5, 6, 7, 10, 13, 14, and 15
for its universality. In this article we investigate the finiteness theorem for
2-universality which means a Hermitian lattice represents all positive definite
binary Hermitian lattices.

M.-H. Kim and the author obtained all ternary and quaternary 2-universal
Hermitian lattices over imaginary quadratic fields (notations will be introduced
in the next section):
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We give some criteria for 2-universality of Hermitian lattices over several

imaginary quadratic fields.

2. Notations and symbols

Let m be a positive square-free integer and E = Q(
√
−m) with the ring

O = OE = Z[ω] of integers, where ω = ωm =
√
−m or 1+

√
−m

2 if m ≡ 1, 2 or 3
(mod 4), respectively.
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For a prime p, we define Ep := E ⊗Q Qp. Then the ring Op of integers of
Ep is defined O⊗Z Zp. If p is inert or ramifies in E, then Ep = Qp(

√
−m) and

α⊗ β = αβ with α ∈ E and β ∈ Qp. If p splits in E, then Ep = Qp ×Qp and
α⊗ β = (αβ, αβ) where · is the canonical involution in E. Thus Ep allows the

unique involution α⊗ β = α⊗ β [10], [3].

Definition 1. A Hermitian space is a finite-dimensional vector space V over
E equipped with a sesqui-linear map H : V × V → E satisfying the following
conditions:

(1) H(x,y) = H(y,x),
(2) H(ax,y) = aH(x,y) for a ∈ E,
(3) H(x1 + x2,y) = H(x1,y) +H(x2,y),

We simply denote H(v,v) by H(v).

From (1)-(3) follow

(2′) H(x, by) = bH(x,y) and (3′) H(x,y1 + y2) = H(x,y1) +H(x,y2).

Definition 2. A Hermitian lattice or briefly a lattice L is an O-module with
a sesqui-linear map H such that H(L,L) ⊆ O.

Through localization at prime p, we can define a Hermitian space over Ep

and a Hermitian Op-lattice.
If L is free with a basis {v1, . . . ,vn}, then we define

ML := (H(vi,vj))n×n

and call it the Gram matrix of L. We often identify ML with the lattice
L. If ML is diagonal, we simply write L = 〈a1, . . . , an〉, where ai = H(vi) for
i = 1, 2, . . . , n. The determinant of ML is called the discriminant of L, denoted
by dL. By EL, we mean the Hermitian space V = E ⊗O L where L is nested.
We define the rank of L by rankL := dimE EL.

It is well known that an O-lattice L can be written as

L = a1v1 + · · ·+ anvn (1)

for vectors v1, . . . ,vn ∈ L and ideals a1, . . . , an ⊆ O. The expression (1) of an
O-lattice L, which is not necessarily free, can be transformed to the form

L = Ow1 + · · ·+Own−1 + awn (2)

for some vectors w1, . . . ,wn ∈ L and an ideal a ⊆ O [9, 81:5]. If L is not free,
or equivalently, if a is not principal, then a is generated by two elements, say
α, β ∈ O. Therefore (2) may be rewritten as

L = Ow1 +Ow2 + · · ·+Own−1 +Oαwn +Oβwn.

We may treat L as if it were a free lattice with basis {w1, . . . ,wn−1, αwn, βwn}.
The rank of L, however, is still n not n+1. In this case the formal Gram matrix
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of L is defined as

ML =


H(w1,w1) . . . H(w1, αwn) H(w1, βwn)

...
. . .

...
...

H(αwn,w1) . . . H(αwn, αwn) H(αwn, βwn)
H(βwn,w1) . . . H(βwn, αwn) H(βwn, βwn)

 .

Let ` and L be two (free or nonfree) Hermitian O-lattices whose (formal)
Gram matrices are M` ∈Mm×m(O) and ML ∈Mn×n(O) respectively. We say
that L represents `, denoted by `→ L, if there exists a suitable X ∈Mm×n(O)
such that M` = XMLX

∗, where X∗ is the conjugate transpose of X.

3. Finiteness theorems for 2-universality

Conway, Schneeberger, and Bhargava’s Fifteen Theorem states : A positive
definite quadratic Z-lattice is universal if it represents every element in the set

A = { 1, 2, 3, 5, 6, 7, 10, 14, 15 }.

Shortly after, an analogous criterion for 2-universality was proved [4], which
states : A positive definite quadratic Z-lattice is 2-universal if it represents
every element in the set

B =

{
〈1, 1〉Z , 〈2, 3〉Z , 〈3, 3〉Z ,

(
2 1
1 2

)
Z
,

(
2 1
1 3

)
Z
,

(
2 1
1 4

)
Z

}
,

where 〈a, b〉Z =

(
a 0
0 b

)
Z

and

(
a b
b c

)
Z

= ax2+2bxy+cy2. We refer the readers

to [7] and [5] for recent developments in this direction. The sets A and B are
called minimal in the sense that no proper subset ensures (2-)universality.

We can find the criteria for 2-universality over several imaginary quadratic
fields.

Theorem 1. A Hermitian lattice over Q(
√
−1) is 2-universal if it represents

〈1, 1〉 and

(
2 1
1 2

)
.

Proof. Let L be a 2-universal lattice over Q(
√
−1). Let {v1,v2} and {v3,v4}

be bases of 〈1, 1〉 and

(
2 1
1 2

)
, respectively. Then L contains a lattice generated

by all vi’s. This lattice can be obtained by using the following positive semi-
definite 4× 4-matrix 

1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ 2 1
∗ ∗ 1 2

 .
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It is isometric to 〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉, or 〈1, 1〉 ⊥
(

2 1
1 2

)
according to suitable

entries. Thus L contains 〈1, 1, 1〉 or 〈1, 1〉 ⊥
(

2 1
1 2

)
. Both lattices are 2-

universal [8]. �

Theorem 2. A Hermitian lattice over Q(
√
−2) is 2-universal if it represents

〈1, 1〉 and

(
2 −1 + ω2

−1 + ω2 2

)
.

Proof. The positive semi-definite matrix
1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ 2 −1 + ω2

∗ ∗ −1 + ω2 2


gives only one lattice 〈1, 1〉 ⊥

(
2 −1 + ω2

−1 + ω2 2

)
. This lattice is 2-universal

[8]. �

Theorem 3. A Hermitian lattice over Q(
√
−3) is 2-universal if it represents

〈1, 1〉 and 〈1, 2〉.

Proof. Let L be a Hermitian lattice and assume that 〈1, 1〉 → L and 〈1, 2〉 →
L. Since 〈1, 1〉 is unimodular, it splits L, that is, L = 〈1, 1〉 ⊥ L0 for some
sublattice L0 of L. In order for L to represent 〈1, 2〉, L0 should represent 1, 2,
or 〈1, 2〉. In any case, L contains either 〈1, 1, 1〉 or 〈1, 1, 2〉. Both are 2-universal
[8]. �

Remark 1. The sets A for universal Z-lattices and B for 2-universal Z-lattices
are unique minimal sets in the respective criteria. In Theorem 3, however,

〈1, 2〉 can be replaced by

(
2 1
1 3

)
. So, the set { 〈1, 1〉 , 〈1, 2〉 } is a minimal but

not a unique set ensuring the 2-universality.

Theorem 4. A Hermitian lattice over Q(
√
−11) is 2-universal if it represents

〈1, 1〉 and

(
2 ω11

ω11 2

)
.

Proof. The positive semi-definite matrix
1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ 2 ω11

∗ ∗ ω11 2


gives only one lattice 〈1, 1〉 ⊥

(
2 ω11

ω11 2

)
. This lattice is 2-universal [8]. �
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