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SCALARIZATION METHODS FOR MINTY-TYPE VECTOR
VARIATIONAL INEQUALITIES*

BYuNG-So0 LEE

ABSTRACT. Many kinds of Minty’s lemmas show that Minty-type varia-
tional inequality problems are very closely related to Stampacchia-type
variational inequality problems. Particularly, Minty-type vector varia-
tional inequality problems are deeply connected with vector optimization
problems. Liu et al. [10] considered vector variational inequalities for set-
valued mappings by using scalarization approaches considered by Kon-
nov [8]. Lee et al. [9] considered two kinds of Stampacchia-type vector
variational inequalities by using four kinds of Stampacchia-type scalar
variational inequalities and obtain the relations of the solution sets be-
tween the six variational inequalities, which are more generalized results
than those considered in [10]. In this paper, the author considers the
Minty-type case corresponding to the Stampacchia-type case considered
in [9].

1. Introduction and Preliminaries

Recently, there have been usually traditional concentrations on scalarization
approaches [3, 4, 6, 8-11] which enable us to replace the vector problems un-
der consideration with equivalent scalar problems in studying vector problems
including vector optimization problems, vector variational inequality problems
and vector equilibrium problems.

In particular, Slavov [11] discussed some scalarization techniques and one
application of multi-objective optimization problems into a mathematical eco-
nomics.

In 2009, Jimenez et al. [6] developed a scalarization method in order to
obtain scalar versions of their results on the necessary and sufficient condi-
tions for strict minimizers of a general vector optimization problem, through a
variational approach.

Konnov [8] also considered a scalarization approach to connect vector vari-
ational inequalities into an equivalent scalar variational inequalities with a
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set-valued cost mapping. He gave an equivalence between weak and strong
solutions of set-valued vector variational inequalities and suggested a new gap
function for vector variational inequalities. He applied his results to vector op-
timization, vector network equilibrium and vector migration equilibrium prob-
lems.

In 2009, Guu et al. [4] extended the scalarization approaches of Giannessi et.
al [3] to set-valued vector optimization problems and set-valued weak vector
optimization problems. The scalar variational inequalities given by them is
different from those given by Konnov [8].

In [10], Liu et al. introduced four kinds of scalar variational inequalities for
studying vector variational inequalities for set-valued mappings by using the
scalarinzation approach considered by Konnov [8].

In [9], Lee et al. obtained more generalized results than the corresponding
results of Liu et al. [10].

In this paper, the author considers Minty-type cases corresponding to Stamp-
acchia-type cases considered in [9].

An ordered Banach space (Y, P) is a real Banach space ordered by a nonempty
closed, convex and pointed cone P C Y, that is, \P C Pfor A >0, P+ P =P
and PN {—P} = {0} with the apex at the origin in the following form of

r>ysc—yePforx,yeY
and
rPysc—yeg Pforz,yeY.
If the interior intP of P is nonempty, then a weak order in Y is defined by
y<zxesz—ycintPforx,yeY
and
yLaxsr—ygintP forx,y €Y.

Throughout this paper, X is a real Banach space with its topological dual
X*, (Y,P)=(R", P), K anonempty convex subset of X, Ny be a nonempty
subset of X* N a nonempty subset of the vector space L(X,Y) of all the
continuous linear mappings from X to Y and (¢, z) the value of £ € L(X,Y) at
r € X, where P=R"T ={A= (A1, Ao,---,Ay) €R™; \; >0, i =1,2,--- ,n}.
Let n : K x K — K be a mapping, T; : K — 2% (i = 1,2,---,n) be
a set-valued mapping, Ty : K — 2% and T : K — 2L(5Y) be set-valued

mappings defined by Ty(z) = conv( U Tl(aj))7 the convex hull of |J T;(z) and
i=1 i=1
T(z) = [] Ti(x). Let M; : K x Ny — 2% (i = 1,2,--- ,n) be a set-valued
i=1

mapping, M : K x N — 2L(X%Y) 4 get-valued mapping defined by

M(z,s) = HMi(m,si) for s=(s1,82, -+ ,8,) € NC L(X,Y)

i=1
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and My : K x Ny — 2% be a set-valued mapping defined by
n
Moy(z,s;) = conv( U Mz(x,sz)> for x € K and s=(s1,82, - ,8,) € N.
i=1

Let fi (i =1,2,---,n) : K — Rbeamapping and f(z) = (f1(z),---, fu(2))
for x € K and B = {(A1, X2, -+, Ay) € R : Y7 A; = 1}, which is a nonempty
i=1

compact and convex subset of R™.

If f(x) =uforall x € K, n(z,y) =x—y for x, y € K and My(z*, s*) = s*,
then we obtain some corresponding results which have been investigated by
many authors [1, 2, 5, 8, 9, 10].

By using a scalarization system, Konnov [8] and Liu et al. [10] converted
vector variational inequalities into equivalent scalar variational inequalities.
Inspired by works of Konnov [8] and Liu et al. [10], in this paper we introduce
four kinds of Minty-type generalized scalar variational inequalities for studying
MT-VVI-S and MT-VVI-W and then we study some relationships between
those variational inequalities under suitable conditions.

The following well-known Kneser Minimax Theorem is essential in the prov-
ing of our main results.

Proposition 1.1. ([7]) Let A be a nonempty convex set in a vector space and B
a nonempty compact convez set in a Hausdorff topological vector space. Suppose
that g is a real-valued function on A x B such that for each fixred a € A, g(a,-)
is lower semicontinuous and conver on B and for each fized b € B, g(-,b) is
concave on A. Then

min sup g(a,b) = sup min g(a, b).
beB aegg( ) aeg beB 9(ab)

2. Main results

We consider the following Minty-type vector(or scalar) variational inequali-
ties:

(MT-VVI-S) Minty-type vector variational inequalities;
Find z* € K such that there exists s* € T'(x*) satisfying

(M(y,s")n(y,z")) + f(y) — f(z") £0, for y € K,

whose solution set is denoted by M-Sysg.

(MT-VVI-W) Minty-type vector variational inequalities;
Find z* € K such that for each y € K there exists s* € T(x*) satisfying

<M(y7 5*)777(y,z*)> + f(y) - f(’l,’*) % Oa

whose solution set is denoted by M-Sy .

(MT-SVI-S) Minty-type scalar variational inequalities;
Find z* € K such that there exists e* € Tp(x*) satisfying

(Mo(y, €*),n(y,2%)) + (A, fy) — f(2")) 2 0, for y € K, A€ B,
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whose solution set is denoted by M-Sgs.
(MT-SVI-1) Minty-type scalar variational inequalities;
Find z* € K such that for each y € K, there exists e* € Ty(z*) satisfying

(Mo(y, e*),n(y,27)) + (A f(y) = f(27)) = 0, for A€ B,

whose solution set is denoted by M-Sg;.
(MT-SVI-2) Minty-type scalar variational inequalities;
Find z* € K such that there exist e* € To(z*), A € B satisfying

(Mo(y,e),n(y,=")) + (A, f(y) — f(z¥)) > 0, for y € K,

whose solution set is denoted by M-Sgs.
(MT-SVI-W) Minty-type scalar variational inequalities;
Find z* € K such that for each y € K, there exist e* € Ty(z*), A € B satisfying

(Mo(y,e™),n(y, x7)) + (A, fy) = f(")) =0,
whose solution set is denoted by M-Sgw .
Remark 2.1. By definitions, we obtain the following relations
M-Sys C M-Syw, M-Sgs € M-Sg1 € M-Sgw and M-Sgg C M-Sgo C M-Sgw.

By using the scalarization approaches, we obtain the other relations between
the solution sets under suitable conditions.

Theorem 2.1. Let My : K x Ng — X* be a mapping such that x — My(-,x) is
continuous and n : K x K — K be a mapping satisfying n(x,y)+n(y,z) =0 for
x,y € K. Assume that for each x € K, T;(x) is nonempty convex and weakly*
compact and f; is convex (i =1,2,--- ,n). Then M-Sga = M-Sgw holds.

Proof. Since T;(xz) (i = 1,2,---,n) is nonempty convex and weakly* com-
pact and B is nonempty compact and convex, so are Ty(x) and Tp(z) x B.
Let 2* € M-Ssw, then for each y € K, there exists e* € Ty(z*) and A =
(A1, A2, -+, A\n) € B such that

(Mo(y,e™)only, @) + Y Nl fily) = file™))
i=1

= (Mo, ),y #%)) + (A f(y) = £(2)) 2 0.
Define a function g : K x Ty(z*) x B — R by

9(a,b,a) = (Mo(y,b), n(z", a)) + (a, f(z") = f(a))

= (Mo(y,b),n(x", a)) + Zai(fi($*> — fi(a))
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fora € K, b e To(x*) and a = (e, 2, -+ ,ap,) € B. Then it follows that

su min a,b,
aeg(b«x)ETo(w*)XBg( %)

= sup (b’a)g;{)ig*)xBﬂMo(y, b),n(x*,a)) + ; ai(fi(z*) = fi(a)}

<0.

On the other hand, for each fixed a € A, g(a,-,-) is continuous (with respect
to the second argument in the weak™ topology of X* and with respect to
the third one in the norm topology of R™) and convex on B and for each
fixed (b,a) € To(z*) x B, g(-,b,a) is concave on A from the convexity of f;
(i=1,2,--- ,n). By Proposition 1.1 we have

min  sup{(Mo(y,b),n(z", a)) + (a, f(z") — f(a))}
(b,)€To(z*)X B ac K

= min su a,b,
(b,a)€To(z*)x B ae]gg( )

= sup min
acK (b,0)€To(z*)x B

Thus there are h* € Tp(2*) and 0 € B such that
(Mo(y, h*),n(2",y)) + (6, f(27) = f(y)) < O forally € K,
which implies that z* € M-Sgs. O

gla,b,a) <O0.

Corollary 2.1. Let My : K X Ng — X* be a mapping such that x — My(x,-)
is continuous and n : K x K — K be a mapping satisfying n(z,y) +n(y,z) =0
forxz, y € K. Assume that for each x € K, T;(z) is nonempty conver and
weakly* compact and f; is conver (i =1,2,--- ,n). Then

M-Sgg € M-Sg1 € M-Sgp = M-Sgw.

Now we characterize the solution sets M-Syg and M-Syw via M-Ssg, M-Sg;,
M—Ssg and M—va.

Theorem 2.2. Let My : K x Ng — X* be a mapping such that x — My(x,-)
is continuous. Assume that for each x € K, T;(x) is a nonempty convex and

weakly® compact and f; is convex (i = 1,2,--- ,n), then the following assertions
hold:

(i) M-Sys € M-Syw C M-Sgo = M-Sgw -
(ii) If To(x) = U Ti(zx) for x € k, then
i=1
M-Ssg € M-Sys and M-Sg; € M-Syw.-
Proof. (i) Let * € M-Syw, then for each y € K,
(M(y,s™),n(y,z%)) + f(y) — f(a¥) £ 0 for some s* € T'(z*).
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Hence for some j € {1,2,3,---,n}, there is sj € T;(z*) such that

(M;(y, s3),n(y, ")) + fi(y) — fi(z") = 0.
Set e* = sj and v = (71,72, , ) With v; = 1 and 7; = 0 for i # j, then
e* € To(z*), v € B and consequently

(Mo(y, €"),n(y, ")) + (v, f(y) — f(z")) =0,
which implies that z* € M-Sgw.

(ii) Assume that for each z € K, Ty(x) . Let z* € M-Ssg, then

I
(-
=
S

there exists
e € To(x") such that (Mo(y,e*),n(y, ")) + (A, f(y) — f(2")) =0
forye K, A € B.

Since for each = € K, To(x) = | Ti(x), there is j € {1,2,--- ,n} such that
i=1
e* € Tj(z*), set A = (A, A2,---,Ap) with A; =1 and \; =0 for ¢ # j. From

the above inequality, we have
(Mo(y,€"),n(y,z")) + f;(y) — fi(z*) = 0, for y € K.
Choose arbitrary elements s; € T;(z*) for i # j, and set s7 = e* and s* =
(s7,85,--+,s5) € T(x*). It follows that
(M(y,s")n(y,z")) + f(y) — f(z") £0, for y € K,
which implies that z* € M-Syg. Similarly, we can show that M-Sg; C M-
Svw- |

Remark 2.2. Our results generalize some results in [9, 10] as corollaries.

Theorem 2.3. (MT-VVI-S) implies the following generalized form
(G-VVI-S) Find z* € K such that there exists s* € T'(x*) satisfying

(M(x%,5%),n(y, %)) + f(y) = f(z") £0, fory € K;
of (VVI-S) considered in [9].
Proof. Suppose that we can find z* € K such that there exists s* € T(z*)
satisfying

(M(y,s"),n(y,=")) + f(y) — f(z") £0, fory € K.

Assume to the contrary that for some yo € K, for all z € K and for all s € T'(z),
we have
<M($7S)777(ya$)> + f(yo) - f(l‘) > 0.
Hence
<M(y07 8*), U(ymx*» + f(yo) - f({E*) >0,
which is a contradiction to our hypothesis. O

Remark 2.3. By the same method, we obtain the implication of (MT-VVI-W)
to the generalized form of (VVI-W) considered in [9].
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Remark 2.4. By defining an appropriate monotone concept, we obtain the
converse implications of Theorem 2.3 and Remark 2.3.
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