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SCALARIZATION METHODS FOR MINTY-TYPE VECTOR
VARIATIONAL INEQUALITIES∗

Byung-Soo Lee

Abstract. Many kinds of Minty’s lemmas show that Minty-type varia-

tional inequality problems are very closely related to Stampacchia-type

variational inequality problems. Particularly, Minty-type vector varia-
tional inequality problems are deeply connected with vector optimization

problems. Liu et al. [10] considered vector variational inequalities for set-
valued mappings by using scalarization approaches considered by Kon-

nov [8]. Lee et al. [9] considered two kinds of Stampacchia-type vector

variational inequalities by using four kinds of Stampacchia-type scalar
variational inequalities and obtain the relations of the solution sets be-

tween the six variational inequalities, which are more generalized results

than those considered in [10]. In this paper, the author considers the
Minty-type case corresponding to the Stampacchia-type case considered

in [9].

1. Introduction and Preliminaries

Recently, there have been usually traditional concentrations on scalarization
approaches [3, 4, 6, 8-11] which enable us to replace the vector problems un-
der consideration with equivalent scalar problems in studying vector problems
including vector optimization problems, vector variational inequality problems
and vector equilibrium problems.

In particular, Slavov [11] discussed some scalarization techniques and one
application of multi-objective optimization problems into a mathematical eco-
nomics.

In 2009, Jimenez et al. [6] developed a scalarization method in order to
obtain scalar versions of their results on the necessary and sufficient condi-
tions for strict minimizers of a general vector optimization problem, through a
variational approach.

Konnov [8] also considered a scalarization approach to connect vector vari-
ational inequalities into an equivalent scalar variational inequalities with a
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set-valued cost mapping. He gave an equivalence between weak and strong
solutions of set-valued vector variational inequalities and suggested a new gap
function for vector variational inequalities. He applied his results to vector op-
timization, vector network equilibrium and vector migration equilibrium prob-
lems.

In 2009, Guu et al. [4] extended the scalarization approaches of Giannessi et.
al [3] to set-valued vector optimization problems and set-valued weak vector
optimization problems. The scalar variational inequalities given by them is
different from those given by Konnov [8].

In [10], Liu et al. introduced four kinds of scalar variational inequalities for
studying vector variational inequalities for set-valued mappings by using the
scalarinzation approach considered by Konnov [8].

In [9], Lee et al. obtained more generalized results than the corresponding
results of Liu et al. [10].

In this paper, the author considers Minty-type cases corresponding to Stamp-
acchia-type cases considered in [9].

An ordered Banach space (Y, P ) is a real Banach space ordered by a nonempty
closed, convex and pointed cone P ⊆ Y , that is, λP ⊂ P for λ > 0, P +P = P
and P ∩ {−P} = {0} with the apex at the origin in the following form of

x ≥ y ⇔ x− y ∈ P for x, y ∈ Y

and
x 6≥ y ⇔ x− y 6∈ P for x, y ∈ Y.

If the interior intP of P is nonempty, then a weak order in Y is defined by

y < x⇔ x− y ∈ intP for x, y ∈ Y

and
y 6< x⇔ x− y 6∈ intP for x, y ∈ Y.

Throughout this paper, X is a real Banach space with its topological dual
X∗ , (Y, P ) ≡ (Rn, P ), K a nonempty convex subset of X, N0 be a nonempty
subset of X∗, N a nonempty subset of the vector space L(X,Y ) of all the
continuous linear mappings from X to Y and 〈`, x〉 the value of ` ∈ L(X,Y ) at
x ∈ X, where P = Rn+ = {λ = (λ1, λ2, · · · , λn) ∈ Rn; λi > 0, i = 1, 2, · · · , n}.
Let η : K × K → K be a mapping, Ti : K → 2X

∗
(i = 1, 2, · · · , n) be

a set-valued mapping, T0 : K → 2X
∗

and T : K → 2L(X,Y ) be set-valued

mappings defined by T0(x) = conv
( n⋃
i=1

Ti(x)
)

, the convex hull of
n⋃
i=1

Ti(x) and

T (x) =
n∏
i=1

Ti(x). Let Mi : K × N0 → 2X
∗

(i = 1, 2, · · · , n) be a set-valued

mapping, M : K ×N → 2L(X,Y ) a set-valued mapping defined by

M(x, s) =
n∏
i=1

Mi(x, si) for s = (s1, s2, · · · , sn) ∈ N ⊂ L(X,Y )



SCALARIZATION METHODS FOR MINTY-TYPE VECTOR VARIATIONAL 417

and M0 : K ×N0 → 2X
∗

be a set-valued mapping defined by

M0(x, si) = conv
( n⋃
i=1

Mi(x, si)
)

for x ∈ K and s = (s1, s2, · · · , sn) ∈ N.

Let fi (i = 1, 2, · · · , n) : K → R be a mapping and f(x) = (f1(x), · · · , fn(x))

for x ∈ K and B = {(λ1, λ2, · · · , λn) ∈ Rn+ :
n∑
i=1

λi = 1}, which is a nonempty

compact and convex subset of Rn.
If f(x) ≡ u for all x ∈ K, η(x, y) = x− y for x, y ∈ K and M0(x∗, s∗) = s∗,

then we obtain some corresponding results which have been investigated by
many authors [1, 2, 5, 8, 9, 10].

By using a scalarization system, Konnov [8] and Liu et al. [10] converted
vector variational inequalities into equivalent scalar variational inequalities.
Inspired by works of Konnov [8] and Liu et al. [10], in this paper we introduce
four kinds of Minty-type generalized scalar variational inequalities for studying
MT-VVI-S and MT-VVI-W and then we study some relationships between
those variational inequalities under suitable conditions.

The following well-known Kneser Minimax Theorem is essential in the prov-
ing of our main results.

Proposition 1.1. ([7]) Let A be a nonempty convex set in a vector space and B
a nonempty compact convex set in a Hausdorff topological vector space. Suppose
that g is a real-valued function on A×B such that for each fixed a ∈ A, g(a, ·)
is lower semicontinuous and convex on B and for each fixed b ∈ B, g(·, b) is
concave on A. Then

min
b∈B

sup
a∈A

g(a, b) = sup
a∈A

min
b∈B

g(a, b).

2. Main results

We consider the following Minty-type vector(or scalar) variational inequali-
ties:

(MT-VVI-S) Minty-type vector variational inequalities;
Find x∗ ∈ K such that there exists s∗ ∈ T (x∗) satisfying

〈M(y, s∗), η(y, x∗)〉+ f(y)− f(x∗) 6< 0, for y ∈ K,
whose solution set is denoted by M-SVS.

(MT-VVI-W) Minty-type vector variational inequalities;
Find x∗ ∈ K such that for each y ∈ K there exists s∗ ∈ T (x∗) satisfying

〈M(y, s∗), η(y, x∗)〉+ f(y)− f(x∗) 6< 0,

whose solution set is denoted by M-SVW.
(MT-SVI-S) Minty-type scalar variational inequalities;

Find x∗ ∈ K such that there exists e∗ ∈ T0(x∗) satisfying

〈M0(y, e∗), η(y, x∗)〉+ 〈λ, f(y)− f(x∗)〉 ≥ 0, for y ∈ K, λ ∈ B,
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whose solution set is denoted by M-SSS.
(MT-SVI-1) Minty-type scalar variational inequalities;

Find x∗ ∈ K such that for each y ∈ K, there exists e∗ ∈ T0(x∗) satisfying

〈M0(y, e∗), η(y, x∗)〉+ 〈λ, f(y)− f(x∗)〉 ≥ 0, for λ ∈ B,

whose solution set is denoted by M-SS1.
(MT-SVI-2) Minty-type scalar variational inequalities;

Find x∗ ∈ K such that there exist e∗ ∈ T0(x∗), λ ∈ B satisfying

〈M0(y, e∗), η(y, x∗)〉+ 〈λ, f(y)− f(x∗)〉 ≥ 0, for y ∈ K,

whose solution set is denoted by M-SS2.
(MT-SVI-W) Minty-type scalar variational inequalities;

Find x∗ ∈ K such that for each y ∈ K, there exist e∗ ∈ T0(x∗), λ ∈ B satisfying

〈M0(y, e∗), η(y, x∗)〉+ 〈λ, f(y)− f(x∗)〉 ≥ 0,

whose solution set is denoted by M-SSW.

Remark 2.1. By definitions, we obtain the following relations

M-SVS ⊂ M-SVW, M-SSS ⊂ M-SS1 ⊂ M-SSW and M-SSS ⊂ M-SS2 ⊂ M-SSW.

By using the scalarization approaches, we obtain the other relations between
the solution sets under suitable conditions.

Theorem 2.1. Let M0 : K×N0 → X∗ be a mapping such that x→M0(·, x) is
continuous and η : K×K → K be a mapping satisfying η(x, y)+η(y, x) = 0 for
x, y ∈ K. Assume that for each x ∈ K, Ti(x) is nonempty convex and weakly∗

compact and fi is convex (i = 1, 2, · · · , n). Then M-SS2 = M-SSW holds.

Proof. Since Ti(x) (i = 1, 2, · · · , n) is nonempty convex and weakly∗ com-
pact and B is nonempty compact and convex, so are T0(x) and T0(x) × B.
Let x∗ ∈ M-SSW, then for each y ∈ K, there exists e∗ ∈ T0(x∗) and λ =
(λ1, λ2, · · · , λn) ∈ B such that

〈M0(y, e∗), η(y, x∗)〉+
n∑
i=1

λi(fi(y)− fi(x∗))

= 〈M0(y, e∗), η(y, x∗)〉+ 〈λ, f(y)− f(x∗)〉 ≥ 0.

Define a function g : K × T0(x∗)×B → R by

g(a, b, α) = 〈M0(y, b), η(x∗, a)〉+ 〈α, f(x∗)− f(a)〉

= 〈M0(y, b), η(x∗, a)〉+
n∑
i=1

αi(fi(x∗)− fi(a))
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for a ∈ K, b ∈ T0(x∗) and α = (α1, α2, · · · , αn) ∈ B. Then it follows that

sup
a∈K

min
(b,α)∈T0(x∗)×B

g(a, b, α)

= sup
a∈K

min
(b,α)∈T0(x∗)×B

{〈M0(y, b), η(x∗, a)〉+
n∑
i=1

αi(fi(x∗)− fi(a)}

≤ 0.

On the other hand, for each fixed a ∈ A, g(a, ·, ·) is continuous (with respect
to the second argument in the weak∗ topology of X∗ and with respect to
the third one in the norm topology of Rn) and convex on B and for each
fixed (b, α) ∈ T0(x∗) × B, g(·, b, α) is concave on A from the convexity of fi
(i = 1, 2, · · · , n). By Proposition 1.1 we have

min
(b,α)∈T0(x∗)×B

sup
a∈K
{〈M0(y, b), η(x∗, a)〉+ 〈α, f(x∗)− f(a)〉}

= min
(b,α)∈T0(x∗)×B

sup
a∈K

g(a, b, α)

= sup
a∈K

min
(b,α)∈T0(x∗)×B

g(a, b, α) ≤ 0.

Thus there are h∗ ∈ T0(x∗) and δ ∈ B such that

〈M0(y, h∗), η(x∗, y)〉+ 〈δ, f(x∗)− f(y)〉 ≤ 0 for all y ∈ K,

which implies that x∗ ∈ M-SS2. �

Corollary 2.1. Let M0 : K ×N0 → X∗ be a mapping such that x→M0(x, ·)
is continuous and η : K×K → K be a mapping satisfying η(x, y) + η(y, x) = 0
for x, y ∈ K. Assume that for each x ∈ K, Ti(x) is nonempty convex and
weakly∗ compact and fi is convex (i = 1, 2, · · · , n). Then

M-SSS ⊆ M-SS1 ⊆ M-SS2 = M-SSW.

Now we characterize the solution sets M-SVS and M-SVW via M-SSS, M-SS1,
M-SS2 and M-SVW.

Theorem 2.2. Let M0 : K ×N0 → X∗ be a mapping such that x→ M0(x, ·)
is continuous. Assume that for each x ∈ K, Ti(x) is a nonempty convex and
weakly∗ compact and fi is convex (i = 1, 2, · · · , n), then the following assertions
hold:

(i) M-SVS ⊆ M-SVW ⊆ M-SS2 = M-SSW.

(ii) If T0(x) =
n⋃
i=1

Ti(x) for x ∈ k, then

M-SSS ⊆ M-SVS and M-SS1 ⊆ M-SVW.

Proof. (i) Let x∗ ∈ M-SVW, then for each y ∈ K,

〈M(y, s∗), η(y, x∗)〉+ f(y)− f(x∗) 6< 0 for some s∗ ∈ T (x∗).
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Hence for some j ∈ {1, 2, 3, · · · , n}, there is s∗j ∈ Tj(x∗) such that

〈Mj(y, s∗j ), η(y, x∗)〉+ fj(y)− fj(x∗) ≥ 0.

Set e∗ = s∗j and γ = (γ1, γ2, · · · , γn) with γj = 1 and γi = 0 for i 6= j, then
e∗ ∈ T0(x∗), γ ∈ B and consequently

〈M0(y, e∗), η(y, x∗)〉+ 〈γ, f(y)− f(x∗)〉 ≥ 0,

which implies that x∗ ∈ M-SSW.

(ii) Assume that for each x ∈ K, T0(x) =
n⋃
i=1

Ti(x). Let x∗ ∈ M-SSS, then

there exists

e∗ ∈ T0(x∗) such that 〈M0(y, e∗), η(y, x∗)〉+ 〈λ, f(y)− f(x∗)〉 ≥ 0

for y ∈ K, λ ∈ B.

Since for each x ∈ K, T0(x) =
n⋃
i=1

Ti(x), there is j ∈ {1, 2, · · · , n} such that

e∗ ∈ Tj(x∗), set λ = (λ1, λ2, · · · , λn) with λj = 1 and λi = 0 for i 6= j. From
the above inequality, we have

〈M0(y, e∗), η(y, x∗)〉+ fj(y)− fj(x∗) ≥ 0, for y ∈ K.
Choose arbitrary elements s∗i ∈ Ti(x∗) for i 6= j, and set s∗j = e∗ and s∗ =
(s∗1, s

∗
2, · · · , s∗n) ∈ T (x∗). It follows that

〈M(y, s∗), η(y, x∗)〉+ f(y)− f(x∗) 6< 0, for y ∈ K,
which implies that x∗ ∈ M-SVS. Similarly, we can show that M-SS1 ⊆ M-
SVW. �

Remark 2.2. Our results generalize some results in [9, 10] as corollaries.

Theorem 2.3. (MT-VVI-S) implies the following generalized form
(G-VVI-S) Find x∗ ∈ K such that there exists s∗ ∈ T (x∗) satisfying

〈M(x∗, s∗), η(y, x∗)〉+ f(y)− f(x∗) 6< 0, for y ∈ K;

of (VVI-S) considered in [9].

Proof. Suppose that we can find x∗ ∈ K such that there exists s∗ ∈ T (x∗)
satisfying

〈M(y, s∗), η(y, x∗)〉+ f(y)− f(x∗) 6< 0, for y ∈ K.
Assume to the contrary that for some y0 ∈ K, for all x ∈ K and for all s ∈ T (x),
we have

〈M(x, s), η(y, x)〉+ f(y0)− f(x) ≥ 0.
Hence

〈M(y0, s∗), η(y0, x∗)〉+ f(y0)− f(x∗) ≥ 0,
which is a contradiction to our hypothesis. �

Remark 2.3. By the same method, we obtain the implication of (MT-VVI-W)
to the generalized form of (VVI-W) considered in [9].
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Remark 2.4. By defining an appropriate monotone concept, we obtain the
converse implications of Theorem 2.3 and Remark 2.3.
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